Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Environ Sci Pollut Res Int ; 31(24): 35353-35368, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38724849

RESUMO

In this work, an efficient utilization method for red mud (RM) is provided through recycling RM as a mineral admixture for the preparation of foamed concrete (FC). Specifically, FC with different RM contents was prepared and investigated in terms of workability, mechanical properties, and hydration products. Results show that adding RM can significantly shorten the setting time, while it inevitably weakens the mechanical properties and fluidity of FC. However, the compressive strength of FC can still meet the strength predicted by the specification requirements when the RM replaces cement with 60% content (3d > 1.6 MPa). Most importantly, the heavy metals leaching from RM-based FC under the action of rain is still unclear, so a device for simulating stormwater runoff was designed to test the heavy metal leaching risk of RM-based FC. The findings indicate that the solidification of cement and the high basicity of the matrix can effectively reduce the leaching risk of heavy metals from RM in FC. Although the pore structure analysis demonstrates that the porosity and connected pores of FC will be deteriorated as RM concentration increases. The results are of great significance for the recycling of waste and the sustainable development of building materials.


Assuntos
Materiais de Construção , Metais Pesados , Metais Pesados/química , Reciclagem , Porosidade
2.
Biosensors (Basel) ; 14(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38785705

RESUMO

The development of rapid detection tools for viruses is vital for the prevention of pandemics and biothreats. Aptamers that target inactivated viruses are attractive for sensors due to their improved biosafety. Here, we evaluated a DNA aptamer (named as 6.9) that specifically binds to the inactivated SARS-CoV-2 virus with a low dissociation constant (KD = 9.6 nM) for the first time. Based on aptamer 6.9, we developed a fiber-optic evanescent wave (FOEW) biosensor. Inactivated SARS-CoV-2 and the Cy5.5-tagged short complementary strand competitively bound with the aptamer immobilized on the surface of the sensor. The detection of the inactivated SARS-CoV-2 virus was realized within six minutes with a limit of detection (LOD, S/N = 3) of 740 fg/mL. We also developed an electrochemical impedance aptasensor which exhibited an LOD of 5.1 fg/mL and high specificity. We further demonstrated that the LODs of the FOEW and electrochemical impedance aptasensors were, respectively, more than 1000 and 100,000 times lower than those of commercial colloidal gold test strips. We foresee that the facile aptamer isolation process and sensor design can be easily extended for the detection of other inactivated viruses.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , COVID-19 , Espectroscopia Dielétrica , Limite de Detecção , SARS-CoV-2 , SARS-CoV-2/isolamento & purificação , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , COVID-19/virologia , Humanos , Tecnologia de Fibra Óptica
3.
Insects ; 15(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38786877

RESUMO

Many insects, including green lacewings, migrate seasonally to exploit suitable breeding and winter habitats. Green lacewings are important natural enemies of insect pests worldwide. Here, four dominant green lacewing species, Chrysoperla nipponensis (Okamoto), Chrysopa pallens (Rambur), Chrysoperla furcifera (Okamoto), and Chrysopa formosa Brauer, were investigated for their ability to migrate between northern and northeastern China across the Bohai Strait from late May to late October each year. Furthermore, there were significant interannual and seasonal differences in the number of migratory green lacewings collected. The number of green lacewings in spring was significantly lower than that in summer and autumn, and the highest average number of green lacewings occurred in June. In addition, there were differences in the sex ratio of migrating green lacewings between months, with a greater proportion of females than males. Finally, the seasonal migration trajectories simulated by the HYSPLIT model revealed that the green lacewings captured on Beihuang Island primarily originated from Shandong Province. Accordingly, these findings contribute to our understanding of green lacewing migration in eastern Asia and aid its incorporation within integrated pest management (IPM) packages for several crop pests. Furthermore, long-term tracking of migrant insect populations can reveal ecosystem services and trophic dynamic processes at the macroscale.

4.
Infect Drug Resist ; 17: 1357-1365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600953

RESUMO

Background: Carbapenem-resistant P. aeruginosa (CRPA) is a common hospital-acquired bacterium. It exhibits high resistance to many antibiotics, including ceftazidime/avibactam and cefteolozane/tazobactam. The presence of carbapenem-resistant genes and co-existence Klebsiella pneumoniae carbapenemase (KPC) and metallo-ß-lactamases (MBLs) further inactivated all ß-lactams. Understanding the resistance genes of CRPA can help in uncovering the resistance mechanism and guiding anti-infective treatment. Herein, we reported a case of perianal infection with hypervirulent ST463 Pseudomonas aeruginosa. Case Presentation: The case is a 32-year-old acute myeloid leukemia (AML) patient with fever and septic shock during hematopoietic stem cell transplantation (HSCT), and the pathogen was finally identified as a highly virulent sequence type 463 (ST463) P. aeruginosa harboring carbapenem-resistant genes blaAFM-1 and blaKPC-2, which was detected in the bloodstream and originated from a perianal infection. The strain was resistant to ceftazidime/avibactam but successfully treated with polymyxin B, surgical debridement, and granulocyte engraftment after HSCT. The AML was cured during the 19-month follow-up. Conclusion: This case emphasizes the importance of metagenomic next-generation sequencing (mNGS) and whole-genome sequencing (WGS) in identifying microbes with rare resistant genes, and managing CRPA, especially in immunocompromised patients. Polymyxin B may be the least resistant option.

5.
Arthritis Res Ther ; 25(1): 229, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017556

RESUMO

OBJECTIVE: Human placenta-derived exosomes (pExo) were generated, characterized, and evaluated as a therapeutic candidate for the treatment of osteoarthritis (OA). METHODS: pExo was generated from full-term human placenta tissues by sequential centrifugation, purification, and sterile filtration. Upon analysis of particle size, cytokine composition, and exosome marker expression, pExo was further tested in cell-based assays to examine its effects on human chondrocytes. In vivo therapeutic efficacies were evaluated in a medial meniscal tear/medial collateral ligament tear (MCLT + MMT) rat model, in which animals received pExo injections intraarticularly and weight bearing tests during in-life stage while histopathology and immunohistochemistry were performed as terminal endpoints. RESULTS: pExo displayed typical particle size, expressed maker proteins of exosome, and contained proteins with pro-proliferative, pro-anabolic, anti-catabolic, or anti-inflammatory activities. In vitro, pExo promoted chondrocyte migration and proliferation dose-dependently, which may involve its activation of cell growth-related signaling pathways. Expression of inflammatory and catabolic genes induced in a cellular OA model was significantly suppressed by pExo. In the rat OA model, pExo alleviated pain burden, restored cartilage degeneration, and downregulated expressions of pro-inflammatory, catabolic, or apoptotic proteins in a dose-dependent manner. CONCLUSIONS: Our study demonstrates that pExo has multiple potential therapeutic effects including symptom control and disease modifying characteristics. This may make it an attractive candidate for further development as an anti-OA therapeutic.


Assuntos
Cartilagem Articular , Exossomos , Osteoartrite , Humanos , Ratos , Animais , Exossomos/metabolismo , Cartilagem Articular/patologia , Osteoartrite/metabolismo , Condrócitos/metabolismo , Anti-Inflamatórios/uso terapêutico
6.
Oncogene ; 42(50): 3708-3718, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37914816

RESUMO

Tripartite motif (TRIM)-containing proteins, one of the largest subfamilies of the RING type E3 ubiquitin ligases, control important biological processes such as cell apoptosis, autophagy, signal transduction, innate immunity and tumorigenesis. So far, the mutual regulation between TRIM family members has rarely been reported. Here, we found for the first time that there was a direct mutual regulation between TRIM21 and TRIM8 in lung and renal cancer cells, mechanistically by activating their proteasome pathway via Lys48 (K48)- linked ubiquitination. Subsequent studies verified that negatively correlated expressions existed in clinical non-small cell lung cancer (NSCLC) and renal cell carcinoma (RCC) tissues, which were closely related to tumor progression. Our findings highlighted a possible homeostasis between TRIM21 and TRIM8 that might possibly affect cell stemness and was expected to provide a new idea for cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Transdução de Sinais/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 1192-1198, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37551497

RESUMO

OBJECTIVE: To observe the clinical characteristics and impact on mortality of carbapenem-resistant Pseudomonas aeruginosa (CRPA) colonized or infected patients with hematological disorders in order to provide evidence for the prevention and treatment of CRPA. METHODS: The patients who were colonized or infected with CRPA in the Department of Hematology of The First Affiliated Hospital of Zhejiang Chinese Medical University from January 2020 to March 2021 were selected as the research subjects, the clinical data such as hospitalization time, primary disease treatment regimen, granulocyte count, previous infection and antibiotic regimen of these patients were analyzed, meanwhile, antibiotic regimen and efficacy during CRPA infection, 30-day and long-term survival were also analyzed. RESULTS: A total of 59 patients were included in this study, and divided into CRPA infection group (43 cases) and CRPA colonization group (16 cases). Univariate logistic regression analysis showed that ECOG score (P =0.003), agranulocytosis (P <0.001), and exposure to upper than 3rd generations of cephalosporins and tigecycline within 30 days (P =0.035, P =0.017) were the high-risk factors for CRPA infection. Multivariate logistic regression analysis showed that ECOG score of 3/4 ( OR=10.815, 95%CI: 1.260-92.820, P =0.030) and agranulocytosis ( OR=13.82, 95%CI: 2.243-85.176, P =0.005) were independent risk factors for CRPA infection. There was a statistically significant difference in cumulative survival rate between CRPA colonization group and CRPA infection group ( χ2=14.134, P < 0.001). Kaplan-Meier survival analysis showed that the influencing factors of 30-day survival in patients with CRPA infection were agranulocytosis (P =0.022), soft tissue infection (P =0.03), and time of hospitalization before CRPA infection (P =0.041). Cox regression analysis showed that agranulocytosis was an independent risk factor affecting 30-day survival of patients with CRPA infection (HR=3.229, 95%CI :1.093-3.548, P =0.034). CONCLUSIONS: Patients with hematological disorders have high mortality and poor prognosis after CRPA infection. Bloodstream infection and soft tissue infection are the main causes of death. Patients with high suspicion of CRPA infection and high-risk should be treated as soon as possible.


Assuntos
Doenças Hematológicas , Infecções dos Tecidos Moles , Humanos , Carbapenêmicos/uso terapêutico , Pseudomonas aeruginosa , Infecções dos Tecidos Moles/tratamento farmacológico , Antibacterianos/uso terapêutico , Análise de Sobrevida
8.
Pest Manag Sci ; 79(10): 4066-4077, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37288961

RESUMO

BACKGROUND: Natural enemies are important in pest control. However, control by natural enemies is hindered by the migration of rice planthoppers. Therefore, comigration and interactions between Laodelphax striatellus (Fallén) and Sogatella furcifera (Horváth) and five predator species, Chrysoperla sinica Tjeder, Harmonia axyridis (Pallas), Episyrphus balteatus, Syrphus corollae (Fab.) and Chrysopa pallens (Rambur) in eastern Asia were investigated. RESULTS: From 2012 to 2021, the migration patterns of two rice planthoppers and five natural enemy species were monitored by suction trapping on Beihuang Island, Shandong Province, China. Both planthoppers and the five natural enemies regularly comigrated from late April to late October each year. There were significant interannual and seasonal differences in the numbers of two rice planthoppers migrating across this island. Simulated seasonal migration trajectories indicated different source areas for the two rice planthoppers, which mainly originated in northeast, north and east China. The biomass of planthoppers was significantly positively correlated with that of the ladybug H. axyridis in all migration periods, and significant differences in the ratio of rice planthoppers to natural enemies among months. A time-lag effect between seasons was obtained when natural enemies and pests comigrated. CONCLUSION: Migration was coordinated between rice planthoppers and natural enemies in East Asia. When natural enemies and rice planthoppers comigrated, time lags between seasons were observed. The unique insights into the migration patterns will help to increase understanding of the occurrence of rice planthoppers in eastern Asia and provide an important theoretical basis for regional monitoring and management of rice planthoppers. © 2023 Society of Chemical Industry.


Assuntos
Hemípteros , Oryza , Animais , Ásia Oriental , China
9.
Int J Biol Sci ; 19(7): 2289-2303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151889

RESUMO

Reprogramming metabolism is a hallmark of cancer cells for rapid progression. However, the detailed functional role of deubiquitinating enzymes (DUBs) in tumor glycolytic reprogramming is still unknown and requires further investigation. USP13 was found to upregulate in osteosarcoma (OS) specimens and promote OS progression through regulating aerobic glycolysis. Interestingly, the m6A writer protein, METTL3, has been identified as a novel target of USP13. USP13 interacts with, deubiquitinates, and therefore stabilizes METTL3 at K488 by removing K48-linked ubiquitin chains. Since METTL3 is a well-known m6A writer and USP13 stabilizes METTL3, we further found that USP13 increased global m6A abundance in OS cells. The results of RNA sequencing and methylated RNA immunoprecipitation sequencing indicated METTL3 could bind to m6A-modified ATG5 mRNA, which is crucial for autophagosome formation, and inhibit ATG5 mRNA decay on an IGF2BP3 dependent manner, thereby promoting autophagy and the autophagy-associated malignancy of OS. Using a small-molecule inhibitor named Spautin-1 to pharmacologically inhibit USP13 induced METTL3 degradation and exhibited significant therapeutic efficacy both in vitro and in vivo. Collectively, our study results indicate that USP13 promotes glycolysis and tumor progression in OS by stabilizing METTL3, thereby stabilizing ATG5 mRNA and facilitating autophagy in OS. Our findings demonstrate the role of the USP13-METTL3-ATG5 cascade in OS progression and show that USP13 is a crucial DUB for the stabilization of METTL3 and a promising therapeutic target for treating OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/genética , RNA Mensageiro/metabolismo , Metiltransferases/genética , Proteína 5 Relacionada à Autofagia , Proteases Específicas de Ubiquitina/genética
10.
Cytotherapy ; 25(12): 1265-1270.e2, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37256239

RESUMO

The tissue factor (TF/CD142) expressed by mesenchymal stromal cells (MSCs) has been regarded as a safety concern in clinical applications as it may trigger thrombosis when MSCs administered intravenously. Human placental allogenic stromal cells (ASCs) are culture-expanded, undifferentiated MSC-like cells derived from full-term postpartum placenta and possess immunomodulatory and pro-angiogenic activities, however, express TF. Here we performed CRISPR/Cas9-mediated TF gene knock out (TFKO) in ASCs, leading to significantly lower TF expression, activity and thrombotic effects. ASCs' characteristics including expansion, expression of phenotypic markers and secretory profile remained unchanged in edited cells, and their immunomodulatory activities, which are functionally relevant to therapeutic applications, were not affected upon TFKO. Taken together, this study provides a feasible strategy which could improve the clinical safety features of MSC-based cell therapy by CRISRP/Cas9-mediated TF gene knock out.


Assuntos
Tromboplastina , Trombose , Feminino , Gravidez , Humanos , Tromboplastina/genética , Sistemas CRISPR-Cas/genética , Placenta , Células Estromais
11.
Int Immunopharmacol ; 118: 110131, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023700

RESUMO

Panaxadiol saponin (PND) is a latent targeted drug for the treatment of aplastic anemia (AA). In this study, we examined the effects of PND on ferroptosis in iron-overload AA and Meg-01 cells. We utilized RNA-seq to analyze differentially expressed genes in iron-induced Meg-01 cells treated with PND. The effects of PND or combined with deferasirox (DFS) on iron deposition, labile iron pool (LIP), several ferroptosis events, apoptosis, mitochondrial structure, as well as ferroptosis-, Nrf2/HO-1-, and PI3K/AKT/mTOR pathway-related markers in iron-induced Meg-01 cells were examined by Prussian-blue staining, flow cytometer, ELISA, Hoechst 33342 staining, transmission electron microscope, and Western blot assays, respectively. Additionally, an AA mice model with iron overload was established. Then, the blood routine was assessed, and the number of bone marrow-derived mononuclear cells (BMMNCs) in mice was counted. Also, serum iron, ferroptosis events, apoptosis, histology, T lymphocyte percentage, ferroptosis-, Nrf2/HO-1-, and PI3K/AKT/mTOR signaling-related targets in primary megakaryocytes of AA mice with iron overload were assessed by commercial kits, TUNEL staining, hematoxylin and eosin (H&E) staining, Prussian blue staining, flow cytometer, and qRT-PCR analysis, respectively. PND suppressed iron-triggered iron overload, and apoptosis, and ameliorated mitochondrial morphology in Meg-01 cells. Importantly, PND ameliorated ferroptosis-, Nrf2/HO-1-, and PI3K/AKT/mTOR signaling-related marker expressions in iron-induced Meg-01 cells or primary megakaryocytes of AA mice with iron overload. Moreover, PND ameliorated body weight, peripheral blood cell counts, the number of BMMNCs, and histological injury in the iron-overload AA mice. Also, PND improved the percentage of T lymphocytes in the iron-overload AA mice. PND attenuates ferroptosis against iron-overload AA mice and Meg-01 cells via activating Nrf2/HO-1 and PI3K/AKT/mTOR pathway and is a promising novel therapeutic candidate for AA.


Assuntos
Anemia Aplástica , Ferroptose , Sobrecarga de Ferro , Saponinas , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Anemia Aplástica/tratamento farmacológico , Transdução de Sinais , Sobrecarga de Ferro/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Ferro
12.
Ann Hematol ; 102(3): 503-517, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36622392

RESUMO

Acquired aplastic anemia (AA) is a bone marrow failure disorder characterized by pancytopenia, and immunosuppressive therapy (IST) is the optional first-line management. Several studies identified the influencing factors on IST response; however, there are still a considerable number of patients suffering from poor prognoses. In this study, we enrolled 61 AA patients aged ≤ 40 years old, and whole-exome sequencing (WES) found unexpected high FANC heterozygous germline mutations (28/61, 45.9%). Patients with FANC mutations have a significantly lower absolute reticulocyte count and CD34+ % in the bone marrow and also lower 3-, 6-, and 9-month IST response than that without mutation, which were 0% vs. 25% (P = 0.017), 26.3% vs. 42.1% (P = 0.495), and 29.4% vs. 72.2% (P = 0.011), especially in anti-thymocyte globulin combined with the cyclosporin A (ATG + CsA) group, which were 0% vs.33.4% (P = 0.143), 25% vs.83.3% (P = 0.103), and 25% vs. 100% (P = 0.003), respectively. The event-free survival in the FANCwt group was also better than that in the FANCmut group (P = 0.016) and also showed in patients who received ATG + CsA treatment (P = 0.045). In addition, all the adverse effects of FANC germline mutation were not significant in stem cell-transplanted group. Our result indicated that the WES-based detection of FANC heterozygous germline mutations may have a great meaning in predicting IST response of acquired AA. This study was registered at chictr.org.cn (# ChiCTR2100054992).


Assuntos
Anemia Aplástica , Proteínas de Grupos de Complementação da Anemia de Fanconi , Pancitopenia , Adulto , Humanos , Anemia Aplástica/terapia , Soro Antilinfocitário/efeitos adversos , Ciclosporina/efeitos adversos , População do Leste Asiático , Sequenciamento do Exoma , Mutação em Linhagem Germinativa , Terapia de Imunossupressão , Imunossupressores/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética
13.
Sci Total Environ ; 859(Pt 2): 160326, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36414064

RESUMO

Injecting CO2 into submarine sediments to form hydrates is one of the potential methods of CO2 sequestration. The transition behavior of CO2 hydrates in porous media is of great practical significance. In this work, CO2 hydrate formation/dissociation in porous media was monitored in real time by a low-field magnetic resonance (MR) system, and a series of dynamic fractal dimensions of the pore space occupied by converted water during the hydrate formation/dissociation process were obtained based on the transverse relaxation time (T2) distributions. In general, the dimension of the converted water space increases with hydrate formation and decreases with the hydrate dissociation progress. A smaller particle size of porous media and a lower initial water saturation can promote hydrate formation, and the corresponding fractal dimension is higher during the hydrate formation process. There is a special status of the fractal period observed during the hydrate formation/dissociation process, and it is considered the temporally and spatially uniform distribution of hydrate crystal formation/dissociation inside the porous media. These results also indicate the relationships between the hydrate transition progress and the dynamic fractal dimension, which are useful for future works on pore-scale hydrate-bearing transitions during hydrate-based CO2 sequestration.


Assuntos
Dióxido de Carbono , Areia , Dióxido de Carbono/química , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Água/química
14.
Oncogene ; 42(1): 62-77, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371565

RESUMO

Argonaute proteins, which consist of AGO1, AGO2, AGO3 and AGO4, are key players in microRNA-mediated gene silencing. So far, few non-microRNA related biological roles of AGO4 have been reported. Here, we first found that AGO4 had low expression in non-small cell lung cancer (NSCLC) patient tumor tissues and could suppress NSCLC cell proliferation and metastasis. Subsequent studies on the mechanism showed that AGO4 could interact with the tripartite motif-containing protein 21 (TRIM21) and the glucose-regulated protein 78 (GRP78). AGO4 promoted ubiquitination of GRP78 by stabilizing TRIM21, a new specific ubiquitin E3 ligase for promoting K48-linked polyubiquitination of GRP78 confirmed in this paper, which resulted in induced cell apoptosis and inhibited autophagy by activating mTOR signal pathway. Further studies showed that p53 had dominant effects on TRIM21-GRP78 axis by directly increasing the expression of TRIM21 in p53 wild-type cells and AGO4 may alternatively regulate TRIM21-GRP78 axis in p53-deficient cells. We also found that overexpression of AGO4 results in suppression of multiple p53-deficient cell growth both in vivo and vitro. Together, we showed for the first time that the AGO4-TRIM21-GRP78 axis, as a new regulatory pathway, may be a novel potential therapeutic target for p53-deficient tumor treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Apoptose/genética , Chaperona BiP do Retículo Endoplasmático , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
15.
Lipids Health Dis ; 21(1): 93, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36192750

RESUMO

BACKGROUND: Anti-thymoglobulin (ATG)-based immunosuppressive treatment (IST) is the standard first-line management for patients with severe AA/very severe AA (SAA/VSAA) and is not suitable for allogeneic stem cell transplantation. The response predictor was not fully investigated. OBJECTIVE: The present study attempted to explore other characteristics, such as serum lipid changes, during ATG-based IST and analyzed their significance in predicting IST response and survival. METHODS: A total of 61 newly diagnosed SAA/VSAA patients who received ATG-based IST were enrolled from January 2011 to June 2019. The blood lipid levels, immunoglobulins, and peripheral T lymphocytes were retrospectively collected, and their correlations with IST response, estimated 8.5-year overall survival (OS) and event-free survival (EFS) were analyzed. RESULTS: The overall response (OR)/complete remission (CR) at 3, 6, and 9 months was 24.6%/6.6%, 52.5%/14.8%, and 65.6%/23.0%, respectively. Based on the 9-month response effect, patients were divided into IST-response (IST-R) and IST-nonresponse (IST-NR) groups. The subgroup baseline characteristics showed that the disease severity grade, absolute neutrophil granulocyte count (ANC), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and apolipoprotein-A (Apo-A) differed between the IST-R and IST-NR groups. Patients with lower Apo-A (< 1.205 g/L) level pretreatment had a better event-free survival (EFS), and a moderate negative correlation was established between the pretreatment Apo-A and 9-month response (P = 0.004). In addition, the T-cell subset and immunoglobulin analyses showed that the responsive patients had a low serum IgA level, which decreased further after therapy. Additionally, a moderate negative correlation was established between the 3-month IgA and 9-month response (P = 0.006). CONCLUSION: Serum Apo-A is a prognostic biomarker for newly diagnosed < 60-year-old SAA/VSAA patients who received ATG-based IST (registered at chictr.org.cn as # ChiCTR2100052979).


Assuntos
Anemia Aplástica , Anemia Aplástica/tratamento farmacológico , Apolipoproteínas , Apolipoproteínas A , Biomarcadores , LDL-Colesterol , Ciclosporina , Humanos , Imunoglobulina A , Terapia de Imunossupressão , Imunossupressores/uso terapêutico , Lipoproteínas HDL , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento
16.
Front Pediatr ; 10: 930119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160781

RESUMO

The role of N 6-methyladenosine modification in immunity is increasingly being appreciated. However, the landscape of m6A regulators in juvenile idiopathic arthritis (JIA) is poorly understood. Thus, this study explored the impact of m6A modification and related lncRNAs in JIA immune microenvironment. Fourteen m6A regulators and eight lncRNAs were identified as potential diagnostic biomarkers for JIA. Two diagnostic models for JIA were also constructed. The putative molecular regulatory mechanism of FTO-mediated m6A modification in JIA was hypothesized. Three distinct m6A patterns mediated by 26 m6A regulators and three diverse lncRNA clusters mediated by 405 lncRNAs were thoroughly investigated. They exhibited dramatically diverse immune microenvironments and expression of HLA genes. The identification of two separate subtypes of enthesitis-related arthritis implies that our work may aid in the establishment of a more precise categorization system for JIA. m6A modification-related genes were obtained, and their underlying biological functions were explored. The m6Ascore system developed for individual JIA patients may be utilized to evaluate the immunological state or molecular pattern, thereby offering therapy recommendations. In short, through the investigation of the m6A regulators in JIA, the current work may contribute to our knowledge of the pathophysiology of JIA.

17.
Mol Ther ; 30(9): 3052-3065, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35791880

RESUMO

Tumor necrosis factor alpha (TNF-α) is a critical pro-inflammatory cytokine in a wide range of tumors and infectious diseases. This study showed for the first time that TNF-α could specifically bind to certain intracellular or circulating inflammation-related microRNAs both in vitro and in vivo. The binding sites of TNF-α to microRNAs are located at the N-terminal of TNF-α and the 3'-GGUU motif of microRNAs. TNF-α could deliver exogenous unmodified single-stranded microRNAs into recipient cells through the TNF-α receptors (TNFRs) and stabilize them from being degraded by RNase in cells. Exogenous miR-146a or let-7c delivered into HCT116 cells by TNF-α could escape from lysosomes and specifically downregulate their target genes and then affect cell proliferation and migration in vitro, as well as tumorigenesis in vivo. Based on the above findings, the concept of "non-conjugated ligand-mediated RNA delivery (ncLMRD)" was proposed, which may serve as a promising strategy for therapeutic microRNA delivery in the future.


Assuntos
MicroRNAs , Fator de Necrose Tumoral alfa , Células Cultivadas , Citocinas , Humanos , Inflamação , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Stem Cell Res Ther ; 13(1): 291, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831906

RESUMO

BACKGROUND: Spinal cord ischemia reperfusion injury (SCIRI) is a complication of aortic aneurysm repair or spinal cord surgery that is associated with permanent neurological deficits. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have been shown to be potential therapeutic options for improving motor functions after SCIRI. Due to their easy access and multi-directional differentiation potential, adipose-derived stem cells (ADSCs) are preferable for this application. However, the effects of ADSC-derived sEVs (ADSC-sEVs) on SCIRI have not been reported. RESULTS: We found that ADSC-sEVs inhibited SCIRI-induced neuronal apoptosis, degradation of tight junction proteins and suppressed endoplasmic reticulum (ER) stress. However, in the presence of the ER stress inducer, tunicamycin, its anti-apoptotic and blood-spinal cord barrier (BSCB) protective effects were significantly reversed. We found that ADSC-sEVs contain tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) whose overexpression inhibited ER stress in vivo by modulating the PI3K/AKT pathway. CONCLUSIONS: ADSC-sEVs inhibit neuronal apoptosis and BSCB disruption in SCIRI by transmitting TSG-6, which suppresses ER stress by modulating the PI3K/AKT pathway.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Isquemia do Cordão Espinal , Estresse do Retículo Endoplasmático , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/terapia , Medula Espinal/patologia , Isquemia do Cordão Espinal/complicações , Isquemia do Cordão Espinal/patologia , Isquemia do Cordão Espinal/terapia
19.
Redox Biol ; 53: 102344, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35636015

RESUMO

Osteosarcoma (OS) is a malignant bone tumor that mainly occurs in adolescents. It is accompanied by a high rate of lung metastasis, and high mortality. Recent studies have suggested the important roles of tripartite motif-containing (TRIM) family proteins in regulating various substrates and signaling pathways in different tumors. However, the detailed functional role of TRIM family proteins in the progression of OS is still unknown and requires further investigations. In this study, we found that tripartite motif-containing 22 (TRIM22) was downregulated in OS tissues and was hence associated with better prognosis. In vitro and in vivo functional analysis demonstrated that TRIM22 inhibits proliferation and metastasis of OS cells. Nuclear factor erythroid 2-related factor 2 (NRF2), a redox regulator, was identified as a novel target for TRIM22. TRIM22 interacts with and accelerates the degradation of NRF2 by inducing its ubiquitination dependent on its E3 ligase activity but independent of Kelch-like ECH-associated protein 1 (KEAP1). Further, a series of gain- and loss-of-function experiments showed that knockdown or overexpression of NRF2 reversed the functions of knockdown or overexpression of TRIM22 in OS. Mechanistically, TRIM22 inhibited OS progression through NRF2-mediated intracellular reactive oxygen species (ROS) imbalance. ROS production was significantly promoted and mitochondrial potential was remarkably inhibited when overexpressing TRIM22, thus activating AMPK/mTOR signaling. Moreover, TRIM22 was also found to inhibit Warburg effect in OS cells. Autophagy activation was found in OS cells which were overexpressed TRIM22, thus leading to autophagic cell death. Treatment with N-Acetylcysteine (NAC), a ROS scavenger or the autophagy inhibitor 3-Methyladenine (3-MA) abolished the decreased malignant phenotypes in TRIM22 overexpressing OS cells. In conclusion, our study indicated that TRIM22 inhibits OS progression by promoting proteasomal degradation of NRF2 independent of KEAP1, thereby activating ROS/AMPK/mTOR/Autophagy signaling that leads to autophagic cell death in OS. Therefore, our findings indicated that targeting TRIM22/NRF2 could be a promising therapeutic target for treating OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adolescente , Autofagia/genética , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Antígenos de Histocompatibilidade Menor/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Osteossarcoma/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo
20.
ACS Appl Mater Interfaces ; 14(22): 25851-25860, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616048

RESUMO

Natural biomaterials with a porous structure inspired smart textiles for personal thermal management. Inspired by the hierarchically fibrous structure of hides, self-assembled hierarchical fibers with cross-scale porous networks are fabricated by the facile wet-spinning method. The biomimetic textile (abbreviated as "T") woven by such fibers exhibits a low thermal conductivity (0.07 W/mK) comparable to that of cowhide. It also shows a high mechanical strength of up to 10 MPa as well as good flexibility (fracture strain exceeds 300%) and hydrophobicity. The heat conduction mechanism of the hierarchical structure is analyzed via finite element simulation. When immersed with the phase-change material, the textile (named as "P") works like an adipose layer. Integration of the layers of T and P effectively slows down the heat conduction and decreases the surface temperature, resembling an animal insulation system. The study paves the way to mass production of high-performance biomimetic materials with hierarchical cellular microstructures for application in thermal insulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...