Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998206

RESUMO

The deformation mechanism and static recrystallization (SRX) behavior of an Ni-based single-crystal superalloy are investigated. Indentation tests were performed to investigate the effects of crystal orientation and external stress on SRX behavior. Following solution heat treatment, the depth of the SRX layer below the indentation increases with a deviation angle (ß) from the [001] orientation. The slip analysis indicates that an increased deviation angle leads to an increase in the resolved shear stress on the slip plane and a decrease in the number of active slip systems. In addition, the variation pattern of the SRX layer depth with the deviation angle is consistent for different external stresses. The depth of the SRX layer also increases with external stress. The coarse γ' phases and residual γ/γ' eutectics obviously enhance the pinning effects on the expansion of recrystallized grain boundaries, resulting in slower growth rates of the recrystallized grains in interdendritic regions than those in dendrite core regions.

2.
Mater Horiz ; 10(10): 3948-3999, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466487

RESUMO

Electrochemical energy conversion and storage driven by renewable energy sources is drawing ever-increasing interest owing to the needs of sustainable development. Progress in the related electrochemical reactions relies on highly active and cost-effective catalysts to accelerate the sluggish kinetics. A substantial number of catalysts have been exploited recently, thanks to the advances in materials science and engineering. In particular, molybdenum sulfide (MoSx) furnishes a classic platform for studying catalytic mechanisms, improving catalytic performance and developing novel catalytic reactions. Herein, the recent theoretical and experimental progress of defective MoSx for catalytic applications is reviewed. This article begins with a brief description of the structure and basic catalytic applications of MoS2. The employment of defective two-dimensional and non-two-dimensional MoSx catalysts in the hydrogen evolution reaction (HER) is then reviewed, with a focus on the combination of theoretical and experimental tools for the rational design of defects and understanding of the reaction mechanisms. Afterward, the applications of defective MoSx as catalysts for the N2 reduction reaction, the CO2 reduction reaction, metal-sulfur batteries, metal-oxygen/air batteries, and the industrial hydrodesulfurization reaction are discussed, with a special emphasis on the synergy of multiple defects in achieving performance breakthroughs. Finally, the perspectives on the challenges and opportunities of defective MoSx for catalysis are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...