Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Environ Sci Technol ; 58(28): 12742-12753, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959431

RESUMO

Short carbon chain alkanes, as typical volatile organic compounds (VOCs), have molecular structural stability and low molecular polarity, leading to an enormous challenge in the catalytic oxidation of propane. Although Ru-based catalysts exhibit a surprisingly high activity for the catalytic oxidation of propane to CO2 and H2O, active RuOx species are partially oxidized and sintered during the oxidation reaction, leading to a decrease in catalytic activity and significantly inhibiting their application in industrial processes. Herein, the Ru/Ce@Co catalyst is synthesized with a specific structure, in which cerium dioxide is dispersed in a thin layer on the surface of Co3O4, and Ru nanoparticles fall preferentially on cerium oxide with high dispersity. Compared with the Ru/CeO2 and Ru/Co3O4 catalysts, the Ru/Ce@Co catalyst demonstrates excellent catalytic activity and stability for the oxidation of propane, even under severe operating conditions, such as recycling reaction, high space velocity, a certain degree of moisture, and high temperature. Benefiting from this particular structure, the Ru/Ce@Co (5:95) catalyst with more Ce3+ species leads to the Ru species being anchored more firmly on the CeO2 surface with a low-valent state and has a strong potential for adsorption and activation of propane and oxygen, which is beneficial for RuOx species with high activity and stability. This work provides a novel strategy for designing high-efficiency Ru-based catalysts for the catalytic combustion of short carbon alkanes.


Assuntos
Oxirredução , Catálise , Cério/química , Propano/química , Propano/análogos & derivados , Rutênio/química
2.
Sensors (Basel) ; 24(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931640

RESUMO

Transformer-based methodologies in object detection have recently piqued considerable interest and have produced impressive results. DETR, an end-to-end object detection framework, ingeniously integrates the Transformer architecture, traditionally used in NLP, into computer vision for sequence-to-sequence prediction. Its enhanced variant, DINO, featuring improved denoising anchor boxes, has showcased remarkable performance on the COCO val2017 dataset. However, it often encounters challenges when applied to scenarios involving small object detection. Thus, we propose an innovative method for feature enhancement tailored to recursive prediction tasks, with a particular emphasis on augmenting small object detection performance. It primarily involves three enhancements: refining the backbone to favor feature maps that are more sensitive to small targets, incrementally augmenting the number of queries for small objects, and advancing the loss function for better performance. Specifically, The study incorporated the Switchable Atrous Convolution (SAC) mechanism, which features adaptable dilated convolutions, to increment the receptive field and thus elevate the innate feature extraction capabilities of the primary network concerning diminutive objects. Subsequently, a Recursive Small Object Prediction (RSP) module was designed to enhance the feature extraction of the prediction head for more precise network operations. Finally, the loss function was augmented with the Normalized Wasserstein Distance (NWD) metric, tailoring the loss function to suit small object detection better. The efficacy of the proposed model is empirically confirmed via testing on the VISDRONE2019 dataset. The comprehensive array of experiments indicates that our proposed model outperforms the extant DINO model in terms of average precision (AP) small object detection.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38934795

RESUMO

BACKGROUND: 17α-hydroxylase/17,20-lyase deficiency (17-OHD) is a rare subtype of congenital adrenal hyperplasia (CAH) caused by homozygous or compound heterozygous pathogenic variants in the CYP17A1 gene. PURPOSE: This study aimed to identify and characterize pathogenic variants in individuals with 17-OHD, and to classify and validate the pathogenicity of novel variants. METHODS: Variants were identified via targeted long-read sequencing (TLRS) of the entire CYP17A1 gene in enrolled 17-OHD patients. The American College of Medical Genetics and Genomics guidelines were employed to assess the pathogenicity of novel variants. A minigene splicing assay was utilized to determine the impact of variants on RNA splicing. RESULTS: This study encompassed 26 patients with 17-OHD, detecting two trans pathogenic variants per patient using the TLRS method. A total of 20 pathogenic variants in the CYP17A1 were identified, with variant c.985_987delinsAA being the most frequent (28/52 alleles), followed by variant c.1459_1467del (4/52 alleles). Five novel variants including c.280T>C, c.470T>A, c.636_637del, c.866A>G, and c.1095del, were classified as pathogenic/likely pathogenic ones according to ACMG criteria. The minigene assay revealed c.866A>G in exon 5 causes a frameshift due to a 104 base pair deletion, while c.470T>A generates two transcripts, with vast majority spliced like the wild-type, and a small fraction lack 35 base pairs in the 5' flank of exon 3. CONCLUSION: The TLRS can determine the cis/trans orientation of two distant variants. Five novel pathogenic variants were reported, broadening the spectrum of CYP17A1 pathogenic variant. The variant c.866A>G, located deep in exon, affects gene function through mechanisms of aberrant splicing.

4.
Adv Sci (Weinh) ; : e2401131, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896817

RESUMO

9,9-bis (diphenylphosphorylphenyl) fluorene (FDPO) and dibenzotetrathienoacene (DBTTA), are synthesized as the neutral and anionic ligands, respectively, to prepare the ErIII coordination polymer [Er(DBTTA)3(FDPO)]n. Based on the intramolecular energy transfer, optical gains at 1.5 µm are demonstrated in [Er(DBTTA)3(FDPO)]n-doped polymer waveguides under excitations of low-power light-emitting diodes (LEDs) instead of laser pumping. A ligand-sensitization scheme between organic ligands and Er3+ ions under an excitation of an ultraviolet (UV) LED is established. Relative gains of 10.5 and 8.5 dB cm-1 are achieved at 1.53 and 1.55 µm, respectively, on a 1-cm-long SU-8 channel waveguide with a cross-section of 2 × 3 µm2 and a 1.5-µm-thick [Er(DBTTA)3(FDPO)]n-doped polymethylmethacrylate (PMMA) as upper cladding. The ErIII coordination polymer [Er(DBTTA)3(FDPO)]n can be conveniently integrated with various low-loss inorganic waveguides to compensate for optical losses in the C-band window. Moreover, by relying on the intramolecular energy transfer and UV LED top-pumping technology, it is easy to achieve coupling packaging of erbium-doped waveguide amplifiers (EDWAs) with pump sources in planar photonic integrated chips, effectively reducing the commercial costs.

5.
Angew Chem Int Ed Engl ; : e202407056, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728222

RESUMO

A copper-catalyzed C4-selective addition of silicon nucleophiles released from an Si-B reagent to prochiral pyridinium triflates is reported. The dearomatization proceeds with excellent enantioselectivity using Cu(CH3CN)4PF6 as the precatalyst and (R,R)-Ph-BPE (1,2-bis[(2R,5R)-2,5-diphenylphospholan-1-yl]ethane) as the chiral ligand. A carbonyl group at C3 is required for this, likely acting a weak donor group to preorganize and direct the nucleophilic attack towards C4. The resulting 4-silylated 1,4-dihydropyridines can be further converted into functionalized piperidine derivatives.

6.
Research (Wash D C) ; 7: 0356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716471

RESUMO

Due to the breaking of time-reversal and parity symmetries and the presence of non-conservative microscopic interactions, active spinner fluids and solids respectively exhibit nondissipative odd viscosity and nonstorage odd elasticity, engendering phenomena unattainable in traditional passive or active systems. Here, we study the effects of odd viscosity and elasticity on phase behaviors of active spinner systems. We find the spinner fluid under a simple shear experiences an anisotropic gas-liquid phase separation driven by the odd-viscosity stress. This phase separation exhibits equilibrium-like behavior, with both binodal-like and spinodal curves and critical point. However, the formed dense liquid phase is unstable, since the odd elasticity instantly takes over the odd viscosity to condense the liquid into a solid-like phase. The unusual phase behavior essentially arises from the competition between thermal fluctuations and the odd response-induced effective attraction. Our results demonstrate that the cooperation of odd viscosity and elasticity can lead to exotic phase behavior, revealing their fundamental roles in phase transition.

7.
ACS Appl Mater Interfaces ; 16(21): 27944-27951, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38764370

RESUMO

Manipulating magnetization via power-efficient spin-orbit torque (SOT) has garnered significant attention in the field of spin-based memory and logic devices. However, the damping-like SOT efficiency (ξDL) in heavy metal (HM)/ferromagnetic metal (FM) bilayers is relatively small due to the strong spin dephasing accompanied by additional spin polarization decay. Furthermore, the perpendicular magnetic anisotropy (PMA) originating from the HM/FM interface is constrained by the thickness of FM, which is unfavorable for thermal stability in practical applications. Consequently, it is valuable to develop systems that not only exhibit large ξDL but also balance thermal stability. In this work, we designed antiferromagnetic-coupled [Co/Gd]N multilayers, where staggered Co and Gd magnetic moments effectively suppress the spin dephasing and additional spin polarization decay. The ordered Co-Gd arrangements along the out-of-plane direction provide bulk PMA, endowing Pt/[Co/Gd]N high thermal stability. The SOT of Pt/[Co/Gd]N was systematically studied with N, demonstrating a significantly large ξDL of up to 0.66. The ξDL of Pt/[Co/Gd]N is greater than those of Pt/Co and Pt/ferrimagnetic alloys. This significant enhancement relies on the effective suppression of spin dephasing in [Co/Gd]N. Our work highlights that the antiferromagnetic-coupled [Co/Gd]N multilayer is a promising candidate for low-consumption and high-density spintronic devices.

8.
Sci Total Environ ; 932: 173103, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729358

RESUMO

Excessive synthetic nitrogen (N) inputs in intensive orchard agrosystems of developing countries are a growing concern regarding their adverse impacts on fruit production and the environment. Quantifying the distribution and contribution of fertilizer N is essential for increasing N use efficiency and minimizing N loss in orchards. A 15N tracer experiment was performed in a young dwarf apple orchard over two growing seasons to determine the fertilizer N transformation and fate. Fertilizer N primarily contributed to 25 % to 75 % of soil nitrate in the top 60 cm, but the contribution to soil microbial biomass N and fixed ammonium was <8 %, with the contribution to plant N ranging from 9 % to 19 %. In most growth periods, soil nitrate and fixed ammonium contents derived from native soil with N fertilization were higher than those not receiving N fertilizer. The N use efficiency of plants was only 2.6 % and 4.9 % in the first and second seasons, respectively, in contrast to 56.6 % and 54.0 % of N recovered in soil. Meanwhile, N assimilated into microbial biomass accounted for 0.8 %, and the proportion fixed by clay minerals was 3.5 %-5.2 %. One season after N fertilization, the nitrate below the 1 m soil layers accounted for 4.6 % of the applied N fertilizer, and the proportion increased to 22.5 % after two seasons. The N loss rate via N2O emission was 0.4 % over two years. The application of N fertilizer facilitated indigenous soil N mineralization, and abiotic ammonium fixation more efficiently retained synthetic N than microbial immobilization. These findings provide new insight into orchard N cycling, and attention should be given to the improvement of soil N retention and turnover capacity regulated by soil microbial and abiotic processes, as well as the potential environmental impacts of additional soil N mineralization resulting from prolonged chemical N fertilization.


Assuntos
Agricultura , Fertilizantes , Malus , Nitrogênio , Solo , Malus/crescimento & desenvolvimento , Nitrogênio/análise , Agricultura/métodos , Solo/química , Monitoramento Ambiental , Nitratos/análise
9.
Nat Commun ; 15(1): 3123, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600179

RESUMO

Stretchable neuromorphic optoelectronics present tantalizing opportunities for intelligent vision applications that necessitate high spatial resolution and multimodal interaction. Existing neuromorphic devices are either stretchable but not reconcilable with multifunctionality, or discrete but with low-end neurological function and limited flexibility. Herein, we propose a defect-tunable viscoelastic perovskite film that is assembled into strain-insensitive quasi-continuous microsphere morphologies for intrinsically stretchable neuromorphic vision-adaptive transistors. The resulting device achieves trichromatic photoadaptation and a rapid adaptive speed (<150 s) beyond human eyes (3 ~ 30 min) even under 100% mechanical strain. When acted as an artificial synapse, the device can operate at an ultra-low energy consumption (15 aJ) (far below the human brain of 1 ~ 10 fJ) with a high paired-pulse facilitation index of 270% (one of the best figures of merit in stretchable synaptic phototransistors). Furthermore, adaptive optical imaging is achieved by the strain-insensitive perovskite films, accelerating the implementation of next-generation neuromorphic vision systems.

10.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38656445

RESUMO

The prevention of drying-induced cracking is crucial in maintaining the mechanical integrity and functionality of colloidal deposits and coatings. Despite exploring various approaches, controlling drying-induced cracking remains a subject of great scientific interest and practical importance. By introducing chain-like particles composed of the same material and with comparable size into commonly used colloidal suspensions of spherical silica nanoparticles, we can significantly reduce the cracks formed in dried particle deposits and achieve a fivefold increase in the critical cracking thickness of colloidal silica coatings. The mechanism underlying the crack suppression is attributed to the increased porosity and pore sizes in dried particle deposits containing chain-like particle, which essentially leads to reduction in internal stresses developed during the drying process. Meanwhile, the nanoindentation measurements reveal that colloidal deposits with chain-like particles exhibit a smaller reduction in hardness compared to those reported using other cracking suppression approaches. This work demonstrates a promising technique for preparing colloidal coatings with enhanced crack resistance while maintaining desirable mechanical properties.

11.
Comput Methods Programs Biomed ; 250: 108171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631128

RESUMO

BACKGROUND AND OBJECTIVE: Interactive soft tissue dissection has been a fundamental procedure in virtual surgery systems. Existing cutting algorithms involve complex topology changes of simulation meshes, which can increase simulation overhead and produce visual artifacts. In this paper, we proposed a novel graph-based shape-matching method that allows for real-time, flexible, progressive, and discontinuous cuts on soft tissue. METHODS: We employed shape-matching constraints within the position-based dynamics (PBD) framework, a widely adopted approach for real-time simulation applications. The soft tissue was effectively modeled using overlapping clusters, each governed by shape-matching constraints. The dissection process was bifurcated into two distinct stages. In the first stage, the surgical scalpel presses the surface of the soft tissue. The soft tissue is cut apart when the surface pressure exceeds a threshold, entering the second stage. To address the discrepancy between the visual mesh and the simulation model during cluster separation, we developed an Aggregate Finding Connected Components (AFCC) algorithm, optimized for GPU computation and integrated with a background grid. This approach also avoids ghost forces and fragmentation artifacts. To control the increase in the number of clusters, we also propose a merging strategy that can run in parallel. RESULTS: Our simulation outcomes demonstrated that the AFCC dissection algorithm effectively manages cluster separation and expansion with robustness. There were no ghost forces between the cutting surface and unrealistic fragments. Our simulation capability extended to supporting intricate and discontinuous cutting routes. Our dissection simulation maintained real-time performance even with over 100,000 particles constituting the soft tissue. CONCLUSIONS: Our real-time and robust surgical dissection simulation technique enables the performance of complex cuts in various surgical scenarios, demonstrating its potential in virtual surgery applications.


Assuntos
Algoritmos , Gráficos por Computador , Simulação por Computador , Humanos , Dissecação , Sistemas Computacionais , Imageamento Tridimensional
12.
Nat Commun ; 15(1): 2624, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521822

RESUMO

Challenges associated with stretchable optoelectronic devices, such as pixel size, power consumption and stability, severely brock their realization in high-resolution digital imaging. Herein, we develop a universal detachable interface technique that allows uniform, damage-free and reproducible integration of micropatterned stretchable electrodes for pixel-dense intrinsically stretchable organic transistor arrays. Benefiting from the ideal heterocontact and short channel length (2 µm) in our transistors, switching current ratio exceeding 106, device density of 41,000 transistors/cm2, operational voltage down to 5 V and excellent stability are simultaneously achieved. The resultant stretchable transistor-based image sensors exhibit ultrasensitive X-ray detection and high-resolution imaging capability. A megapixel image is demonstrated, which is unprecedented for stretchable direct-conversion X-ray detectors. These results forge a bright future for the stretchable photonic integration toward next-generation visualization equipment.

13.
Opt Lett ; 49(5): 1329-1332, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427005

RESUMO

In this Letter, we demonstrate a sensitivity-enhanced strain sensor based on a shape-modulated multimode fiber (MMF). In contrast to conventional single-mode-multimode-single-mode (SMS) fiber structures, which typically contain a single cylindrical homogeneous MMF section, the shape of the MMF section in this investigation is modulated by lateral offset splicing of multiple MMF segments. Simulation results show that the designed shape-modulated MMF has a higher peak mechanical strain than that of a cylindrical MMF. Experimental results demonstrate that the strain sensitivity achieved by the shaped-modulated MMF-formed SMS fiber structure is as high as -55.63 pm/µÎµ, which is 33 times higher than that for a cylindrical MMF-formed conventional SMS fiber structure at -1.65 pm/µÎµ. This high sensitivity and low-fabrication cost SMS fiber sensor has the potential to be a promising candidate in precise strain measurement applications.

14.
Sci Rep ; 14(1): 2643, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302489

RESUMO

The ground state search of the Ising model can be used to solve many combinatorial optimization problems. Under the current computer architecture, an Ising ground state search algorithm suitable for hardware computing is necessary for solving practical problems. Inspired by the potential energy conversion of the springs, we propose the Spring-Ising Algorithm, a point convolutional neural network algorithm for ground state search based on the spring vibration model. Spring-Ising Algorithm regards the spin as a moving mass point connected to a spring and establishes the equation of motion for all spins. Spring-Ising Algorithm can be mapped on AI chips through the basic structure of the neural network for fast and efficient parallel computing. The algorithm has shown promising results in solving the Ising model and has been tested in the recognized test benchmark K2000. The optimal results of this algorithm after 10,000 steps of iteration are 2.9% of all results. The algorithm introduces the concept of dynamic equilibrium to achieve a more detailed local search by dynamically adjusting the weight of the Ising model in the spring oscillation model. Spring-Ising Algorithm offers the possibility to calculate the Ising model on a chip which focuses on accelerating neural network calculations.

15.
Plant Cell ; 36(6): 2117-2139, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38345423

RESUMO

Plants have evolved complex mechanisms to adapt to harsh environmental conditions. Rice (Oryza sativa) is a staple food crop that is sensitive to low temperatures. However, its cold stress responses remain poorly understood, thus limiting possibilities for crop engineering to achieve greater cold tolerance. In this study, we constructed a rice pan-transcriptome and characterized its transcriptional regulatory landscape in response to cold stress. We performed Iso-Seq and RNA-Seq of 11 rice cultivars subjected to a time-course cold treatment. Our analyses revealed that alternative splicing-regulated gene expression plays a significant role in the cold stress response. Moreover, we identified CATALASE C (OsCATC) and Os03g0701200 as candidate genes for engineering enhanced cold tolerance. Importantly, we uncovered central roles for the 2 serine-arginine-rich proteins OsRS33 and OsRS2Z38 in cold tolerance. Our analysis of cold tolerance and resequencing data from a diverse collection of 165 rice cultivars suggested that OsRS2Z38 may be a key selection gene in japonica domestication for cold adaptation, associated with the adaptive evolution of rice. This study systematically investigated the distribution, dynamic changes, and regulatory mechanisms of alternative splicing in rice under cold stress. Overall, our work generates a rich resource with broad implications for understanding the genetic basis of cold response mechanisms in plants.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/fisiologia , Processamento Alternativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura Baixa , Resposta ao Choque Frio/genética , Transcriptoma/genética
16.
Sci Total Environ ; 920: 171014, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369163

RESUMO

With the rapid development of the economy, household activities have emerged as an important source of greenhouse gas (GHG) emissions, making them a crucial focal point for research in the pursuit of sustainable development and carbon emission reduction. Hulunber, as a typical steppe region in eastern Eurasia, is representative of studying the GHG emissions from household ranches, which are the basic production units in this region. In this paper, based on survey data of 2018 and 2019, we quantified and assessed GHG emissions from household ranches by combining life cycle assessment (LCA) and structural equation modeling (SEM) approaches, with LCA to define household ranches system boundary and SEM to determine the key driving factors of emissions. The results showed that GHG emissions of meat sheep live weight was 23.54 kg CO2-eq/kg. The major contributor to household GHG emissions was enteric methane (55.23 %), followed by coal use (20.80 %) and manure management systems (9.16 %), and other contributing factors (14.81 %). The SEM results indicated that the GHG emissions from household ranches were derived primarily by economic level, while the economic level was significantly affected by income. This study also found a significant positive and linear correlation between household GHG emissions and the number of meat sheep (R2 = 0.89, P < 0.001). The GHG emissions from meat sheep production (67.52 %) were double times greater than household livelihood consumption (32.48 %). These findings emphasized the importance of reducing emissions from meat sheep production and adjusting the energy mix of household livelihood, contributing to the establishment of a low-carbon household livelihood operation.


Assuntos
Gases de Efeito Estufa , Animais , Ovinos , Gases de Efeito Estufa/análise , Efeito Estufa , Pradaria , Carbono , Carne
17.
Chem Biodivers ; 21(3): e202400118, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349284

RESUMO

Five new compounds, including four hydroxyphenylacetic acid derivatives, stachylines H-K (1-4), a derivative of hydroxyphenylethanol (5), as well as seven known compounds were obtained from a marine-derived fungus Fusarium oxysporum F0888 isolated from sediments in the South China Sea. The structures and absolute configurations of new compounds were determined by spectroscopic (IR, NMR, and HR-ESI-MS) analyses, comparison of optical rotations, and the modified Mosher's MTPA ester method. Antimicrobial and anti-inflammatory activities of compounds 1-12 were tested. Unfortunately, all of isolated compounds were inactivity.


Assuntos
Fungos , Fusarium , Antibacterianos/química , Fungos/química , Fusarium/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
18.
Mol Neurobiol ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376762

RESUMO

Ischemia-reperfusion (I/R) injury is a key influencing factor in the outcome of stroke. Inflammatory response, oxidative stress, and neuronal apoptosis are among the main factors that affect the progression of I/R injury. Farrerol (FAR) is a natural compound that can effectively inhibit the inflammatory response and oxidative stress. However, the role of FAR in cerebral I/R injury remains unknown. In this study, we found that FAR reduced brain injury and neuronal viability after cerebral I/R injury. Meanwhile, administration of FAR also reduced the inflammatory response of microglia after brain injury. Mechanistically, FAR treatment directly reduced neuronal death after oxygen glucose deprivation/re-oxygenation (OGD/R) through enhancing cAMP-response element binding protein (CREB) activation to increase the expression of downstream neurotrophic factors and anti-apoptotic genes. Moreover, FAR decreased the activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, inhibited microglia activation, and reduced the production of inflammatory cytokines in microglia after OGD/R treatment or LPS stimulation. The compromised inflammatory response by FAR directly promoted the survival of neurons after OGD/R. In conclusion, FAR exerted a protective effect on cerebral I/R injury by directly decreasing neuronal death through upregulating CREB expression and attenuating neuroinflammation. Therefore, FAR could be a potentially effective drug for the treatment of cerebral I/R injury.

19.
EBioMedicine ; 100: 104955, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171113

RESUMO

BACKGROUND: Cancer treatment with immune checkpoint inhibition (ICI) can cause immune-related adverse events in the central nervous system (CNS irAE). There are no blood biomarkers to detect CNS irAE. We investigated if concentrations of S100-calcium-binding protein B (S100B) and neurofilament light chain (NfL) in blood can be used as biomarkers for CNS irAE and assessed the incidence of CNS irAE in a cohort of ICI-treated patients. METHODS: In this single-centre, retrospective cohort study, we examined medical records and laboratory data of 197 consecutive patients treated with combined CTLA-4 and PD-1 inhibition (ipilimumab; ipi + nivolumab; nivo) for metastatic melanoma or renal cell carcinoma. CNS irAE was diagnosed using established criteria. Concentrations of S100B and NfL in blood were measured in patients with CNS irAE and in 84 patients without CNS irAE. FINDINGS: Nine of 197 patients (4.6%) fulfilled criteria for CNS irAE. S100B and NfL in blood increased during CNS inflammation and normalized during immunosuppression. CNS irAE was detected with a sensitivity of 100% (S100B) and 79% (NfL) and a specificity of 89% (S100B) and 74% (NfL). Patients with CNS irAE had simultaneous increased concentration of C-reactive protein (CRP) (9/9) and alanine aminotransferase (ALT) and/or aspartate aminotransferase (AST) in blood (8/9). INTERPRETATION: Analysis of S100B, NfL and CRP in blood facilitates the diagnosis of CNS irAE. CNS irAE may be more common than previously reported. There may be shared immune mechanisms between CNS and hepatitis irAE. FUNDING: Supported by funding from the Swedish Cancer Foundation, the ALF-agreement, and Jubileumsklinikens Cancerfond.


Assuntos
Filamentos Intermediários , Melanoma , Humanos , Estudos Retrospectivos , Biomarcadores , Nivolumabe , Sistema Nervoso Central , Inflamação , Subunidade beta da Proteína Ligante de Cálcio S100
20.
Adv Mater ; 36(4): e2305987, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37639714

RESUMO

Multifunctional semiconductors integrating unique optical, electrical, mechanical, and chemical characteristics are critical to advanced and emerging manufacturing technologies. However, due to the trade-off challenges in design principles, fabrication difficulty, defects in existing materials, etc., realizing multiple functions through multistage manufacturing is quite taxing. Here, an effective molecular design strategy is established to prepare a class of multifunctional integrated polymer semiconductors. The pyridal[1,2,3]triazole-thiophene co-structured tetrapolymers with full-backbone coplanarity and considerable inter/intramolecular noncovalent interactions facilitate short-range order and excellent (re)organization capability of polymer chains, providing stress-dissipation sites in the film state. The regioregular multicomponent conjugated backbones contribute to dense packing, excellent crystallinity, high crack onset strain over 100%, efficient carrier transport with mobilities exceeding 1 cm2  V-1  s-1 , and controllable near-infrared luminescence. Furthermore, a homologous blending strategy is proposed to further enhance the color-tunable luminescent properties of polymers while effectively retaining mechanical and electrical properties. The blended system exhibits excellent field-effect mobility (µ) and quantum yield (Φ), reaching a record Φ · µ of 0.43 cm2  V-1  s-1 . Overall, the proposed strategy facilitates a rational design of regioregular semicrystalline intrinsically stretchable polymers with high mobility and color-tunable intense luminescence, providing unique possibilities for the development of multifunctional integrated semiconductors in organic optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...