Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Biomacromolecules ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822786

RESUMO

Traditional hydrogel-based wearable sensors with flexibility, biocompatibility, and mechanical compliance exhibit potential applications in flexible wearable electronics. However, the low sensitivity and poor environmental resistance of traditional hydrogels severely limit their practical application. Herein, high-ion-conducting poly(vinyl alcohol) (PVA) nanocomposite hydrogels were fabricated and applied for harsh environments. MXene ion-conducting microchannels and poly(sodium 4-styrenesulfonate) ion sources contributed to the directional transport of abundant free ions in the hydrogel, which significantly improved the sensitivity and mechanical-electric conversion of the nanocomposite hydrogel-based piezoelectric and triboelectric sensors. More importantly, the glycerol as an antifreezing agent enabled the hydrogel-based sensors to function in harsh environments. Therefore, the nanocomposite hydrogel exhibited high gauge factor (GF) at -20 °C (GF = 3.37) and 60 °C (GF = 3.62), enabling the hydrogel-based sensor to distinguish different writing letters and sounding words. Meanwhile, the hydrogel-based piezoelectric and triboelectric generators showed excellent mechanical-electric conversion performance regardless of low- (-20 °C) or high- (60 °C) temperature environments, which can be applied as a visual feedback system for information transmission without external power sources. This work provides self-powered nanocomposite hydrogel-based sensors that exhibit potential applications in flexible wearable electronics under harsh environmental conditions.

2.
Crit Rev Immunol ; 44(6): 99-110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848297

RESUMO

Ischemic stroke (IS) is one of the leading causes of death and disability worldwide. Electroacupuncture (EA) has been shown to exert a neuroprotective effect in IS. However, its specific anti-IS mechanisms remain to be fully elucidated. By constructing a rat IS (middle cerebral artery occlusion, or MCAO) model and performing EA treatment, neurological deficit score, brain water content, and cerebral infarction were evaluated. ELISA was used to measure the levels of oxidative stress-related molecules (MDA, SOD, GSH, and CAT). Ferroptosis-related proteins (GPX4, SLC7A11, TfR1, L-ferritin, and hepcidin), neurological damage-related proteins (GFAP, Iba-1, and Nestin), α7nAChR, and mTOR pathway-related proteins (mTOR, p-mTOR, and SREBP1) in the rat brain penumbra were assessed by western blotting. Following EA treatment, neurological deficit scores, brain water content, cerebral infarction area, and GFAP, Iba-1, and Nestin expression were reduced. Additionally, EA treatment decreased MDA and increased SOD, GSH, and CAT. Moreover, the rats showed elevated GPX4 and SLC7A11 and lowered TfR1, L-ferritin, and hepcidin. In contrast, a7nAChR, mTOR, p-mTOR, and SREBP1 expression were upregulated. EA treatment inhibited OS and ferroptosis to exert a neuroprotective effect in IS, which might be realized via the activation of mTOR/SREBP1 signaling.


Assuntos
Eletroacupuntura , Ferroptose , AVC Isquêmico , Estresse Oxidativo , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Ratos , Serina-Treonina Quinases TOR/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/terapia , Modelos Animais de Doenças , Masculino , Humanos , Ratos Sprague-Dawley
4.
Angew Chem Int Ed Engl ; : e202406016, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703020

RESUMO

Metabolic acidosis-induced kidney injury (MAKI) is asymptomatic and lack of clinical biomarkers in early stage, but rapidly progresses to severe renal fibrosis and ultimately results in end-stage kidney failure. Therefore, developing rapid and noninvasive strategies direct responsive to renal tubular acidic microenvironment rather than delayed biomarkers are essential for timely renoprotective interventions. Herein, we develop pH-responsive luminescent gold nanoparticles (p-AuNPs) in the second near-infrared emission co-coated with 2,3-dimethylaleic anhydride conjugated ß-mercaptoethylamine and cationic 2-diethylaminoethanethiol hydrochloride, which showed sensitive pH-induced charge reversal and intrarenal self-assembly for highly sensitive and long-time (~24 h) imaging of different stages of MAKI. By integrating advantages of pH-induced intrarenal self-assembly and enhanced interactions between pH-triggered positively charged p-AuNPs and renal tubular cells, the early- and late-stage MAKI could be differentiated rapidly within 10 min post-injection (p.i.) with contrast index (CI) of 3.5 and 4.3, respectively. The corresponding maximum CI could reach 5.1 and 9.2 at 12 h p.i., respectively. Furthermore, p-AuNPs were demonstrated to effectively real-time monitor progressive recovery of kidney injury in MAKI mice after therapy, and also exhibit outstanding capabilities for drug screening. This pH-responsive strategy showed great promise for feedback on kidney dysfunction progression, opening new possibilities for early-stage diagnosis of pH-related diseases.

5.
Neural Netw ; 177: 106398, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38805796

RESUMO

Multi-source unsupervised domain adaptation aims to transfer knowledge from multiple labeled source domains to an unlabeled target domain. Existing methods either seek a mixture of distributions across various domains or combine multiple single-source models for weighted fusion in the decision process, with little insight into the distributional discrepancy between different source domains and the target domain. Considering the discrepancies in global and local feature distributions between different domains and the complexity of obtaining category boundaries across domains, this paper proposes a novel Active Dynamic Weighting (ADW) for multi-source domain adaptation. Specifically, to effectively utilize the locally advantageous features in the source domains, ADW designs a multi-source dynamic adjustment mechanism during the training process to dynamically control the degree of feature alignment between each source and target domain in the training batch. In addition, to ensure the cross-domain categories can be distinguished, ADW devises a dynamic boundary loss to guide the model to focus on the hard samples near the decision boundary, which enhances the clarity of the decision boundary and improves the model's classification ability. Meanwhile, ADW applies active learning to multi-source unsupervised domain adaptation for the first time, guided by dynamic boundary loss, proposes an efficient importance sampling strategy to select target domain hard samples to annotate at a minimal annotation budget, integrates it into the training process, and further refines the domain alignment at the category level. Experiments on various benchmark datasets consistently demonstrate the superiority of our method.


Assuntos
Redes Neurais de Computação , Algoritmos , Humanos , Aprendizado de Máquina não Supervisionado
6.
Genes (Basel) ; 15(4)2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38674335

RESUMO

The starch synthase (SS) plays important roles in regulating plant growth and development and responding to adversity stresses. Although the SS family has been studied in many crops, it has not been fully identified in sweet potato and its two related species. In the present study, eight SSs were identified from Ipomoea batatas (I. batata), Ipomoea trifida (I. trifida), and Ipomoea trlioba (I. trlioba), respectively. According to the phylogenetic relationships, they were divided into five subgroups. The protein properties, chromosomal location, phylogenetic relationships, gene structure, cis-elements in the promoter, and interaction network of these proteins were also analyzed; stress expression patterns were systematically analyzed; and real-time polymerase chain reaction (qRT-PCR) analysis was performed. Ipomoea batatas starch synthase (IbSSs) were highly expressed in tuber roots, especially Ipomoea batatas starch synthase 1 (IbSS1) and Ipomoea batatas starch synthase 6 (IbSS6), which may play an important role in root development and starch biosynthesis. At the same time, the SS genes respond to potassium deficiency, hormones, cold, heat, salt, and drought stress. This study offers fresh perspectives for enhancing knowledge about the roles of SSs and potential genes to enhance productivity, starch levels, and resistance to environmental stresses in sweet potatoes.


Assuntos
Regulação da Expressão Gênica de Plantas , Ipomoea batatas , Filogenia , Proteínas de Plantas , Sintase do Amido , Sintase do Amido/genética , Sintase do Amido/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Família Multigênica , Genoma de Planta/genética , Ipomoea/genética
7.
Zookeys ; 1197: 115-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651112

RESUMO

Mastotermitidae, the first-diverging extant family of termites, has only one relic extant species; however, this family had greater richness during the Mesozoic and Cenozoic eras. Fossil termites from the Cretaceous provide information on the early evolution of termites and the transition between extinct families. Herein, two new Mastotermitidae species found in upper Cretaceous (Cenomanian) Kachin amber are reported. One is a female imago described as Angustitermesreflexusgen. et sp. nov. and assigned to the subfamily Mastotermitinae. The other is Mastotermesreticulatussp. nov., which is described from an isolated forewing. With the comparison especially of the antenna and venation, these new mastotermitids further increase our knowledge of the diversity and morphology of Mastotermitidae during the Mesozoic.

8.
Structure ; 32(6): 780-794.e5, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38503293

RESUMO

Base excision repair (BER) is a critical genome defense pathway that copes with a broad range of DNA lesions induced by endogenous or exogenous genotoxic agents. AP endonucleases in the BER pathway are responsible for removing the damaged bases and nicking the abasic sites. In plants, the BER pathway plays a critical role in the active demethylation of 5-methylcytosine (5mC) DNA modification. Here, we have determined the crystal structures of Arabidopsis AP endonuclease AtARP in complex with the double-stranded DNA containing tetrahydrofuran (THF) that mimics the abasic site. We identified the critical residues in AtARP for binding and removing the abasic site and the unique residues for interacting with the orphan base. Additionally, we investigated the differences among the three plant AP endonucleases and evaluated the general DNA repair capacity of AtARP in a mammalian cell line. Our studies provide further mechanistic insights into the BER pathway in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Modelos Moleculares , Humanos , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , DNA/metabolismo , DNA/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Furanos/metabolismo , Furanos/química , Ligação Proteica
9.
Neuroscience ; 545: 185-195, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38522660

RESUMO

Post-stroke cognitive impairment is a significant challenge with limited treatment options. Electroacupuncture (EA) has shown promise in improving cognitive function after stroke. Our study explores the underlying mechanism of EA in alleviating cognitive impairment through the inhibition of autophagy. We utilized a rat model of stroke induced by middle cerebral artery occlusion (MCAO) to evaluate the efficacy of EA. Treatment with EA was observed to markedly improve cognitive function and reduce inflammation in MCAO rats, as evidenced by decreased neurological deficit scores, shorter latencies in the water maze test, and diminished infarct volumes. EA also attenuated tissue damage in the hippocampus and lowered the levels of pro-inflammatory cytokines and oxidative stress markers. Although autophagy was upregulated in MCAO rats, EA treatment suppressed this process, indicated by a reduction in autophagosome formation and alteration of autophagy-related protein expression. The protective effects of EA were reversed by the autophagy activator rapamycin. EA treatment elevated the levels of microRNA (miR)-135a-5p expression, and suppression of this elevation attenuated the remedial efficacy of EA in addressing cognitive impairment and inflammation. MiR-135a-5p targeted mammalian target of rapamycin (mTOR)/NOD-like receptor protein 3 (NLRP3) signaling to repress autophagy. EA treatment inhibits autophagy and alleviates cognitive impairment in post-stroke rats. It exerts its beneficial effects by upregulating miR-135a-5p and targeting the mTOR/NLRP3 axis.


Assuntos
Autofagia , Disfunção Cognitiva , Eletroacupuntura , MicroRNAs , Proteína 3 que Contém Domínio de Pirina da Família NLR , Serina-Treonina Quinases TOR , Animais , Masculino , Ratos , Autofagia/fisiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Eletroacupuntura/métodos , Hipocampo/metabolismo , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Serina-Treonina Quinases TOR/metabolismo
10.
Math Biosci Eng ; 21(2): 2121-2136, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38454676

RESUMO

System-level fault diagnosis model, namely, the PMC model, detects fault nodes only through the mutual testing of nodes in the system without physical equipment. In order to achieve server nodes fault diagnosis in large-scale data center networks (DCNs), the traditional algorithm based on the PMC model cannot meet the characteristics of high diagnosability, high accuracy and high efficiency due to its inability to ensure that the test nodes are fault-free. This paper first proposed a fault-tolerant Hamiltonian cycle fault diagnosis (FHFD) algorithm, which tests nodes in the order of the Hamiltonian cycle to ensure that the test nodes are faultless. In order to improve testing efficiency, a hierarchical diagnosis mechanism was further proposed, which recursively divides high scale structures into a large number of low scale structures based on the recursive structure characteristics of DCNs. Additionally, we proved that $ 2(n-2){n^{k-1}} $ and $ (n-2){t_{n, k}}/{t_{n, 1}} $ faulty nodes could be detected for $ BCub{e_{n, k}} $ and $ DCel{l_{n, k}} $ within a limited time for the proposed diagnosis strategy. Simulation experiments have also shown that our proposed strategy has improved the diagnosability and test efficiency dramatically.

11.
Nat Chem ; 16(4): 521-532, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504025

RESUMO

Chiral α-tertiary amines and related azacycles are sought-after compounds for drug development. Despite progress in the catalytic asymmetric construction of aza-quaternary stereocentres, enantioselective synthesis of multifunctional α-tertiary amines remains underdeveloped. Enantioenriched α-disubstituted α-ethynylamines are attractive synthons for constructing chiral α-tertiary amines and azacycles, but methods for their catalytic enantioselective synthesis need to be expanded. Here we describe an enantioselective asymmetric Cu(I)-catalysed propargylic amination (ACPA) of simple ketone-derived propargylic carbonates to give both α-dialkylated and α-alkyl-α-aryl α-tertiary ethynylamines. Sterically confined pyridinebisoxazoline (PYBOX) ligands, with a C4 shielding group and relaying groups, play a key role in achieving excellent enantioselectivity. The syntheses of quaternary 2,5-dihydropyrroles, dihydroquinines, dihydrobenzoquinolines and dihydroquinolino[1,2-α]quinolines are reported, and the synthetic value is further demonstrated by the enantioselective catalytic total synthesis of a selective multi-target ß-secretase inhibitor. Enantioselective Cu-catalysed propargylic substitutions with O- and C-centred nucleophiles are also realized, further demonstrating the potential of the PYBOX ligand.

12.
Curr Med Chem ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468516

RESUMO

Afterglow materials with organic room temperature phosphorescence (RTP) or thermally activated delayed fluorescence (TADF) exhibit significant potential in biological imaging due to their long lifetime. By utilizing time-resolved technology, interference from biological tissue fluorescence can be mitigated, enabling high signal-- to-background ratio imaging. Despite the continued emergence of individual reports on RTP or TADF in recent years, comprehensive reviews addressing these two materials are rare. Therefore, this review aims to provide a comprehensive overview of several typical molecular designs for organic RTP and TADF materials. It also explores the primary methods through which triplet excitons resist quenching by water and oxygen. Furthermore, we analyze the principal challenges faced by afterglow materials and discuss key directions for future research with the hope of inspiring developments in afterglow imaging.

14.
Bioorg Chem ; 145: 107219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377821

RESUMO

SET domain bifurcated methyltransferase 1 (SETDB1) serves as a histone lysine methyltransferase, catalyzing the di- and tri-methylation of histone H3K9. Mounting evidence indicates that the abnormal expression or activity of SETDB1, either through amplification or mutation, plays a crucial role in tumorigenesis and progression. This is particularly evident in the context of tumor immune evasion and resistance to immune checkpoint blockade therapy. Furthermore, there is a robust association between SETDB1 dysregulation and an unfavorable prognosis across various types of tumors. The oncogenic role of SETDB1 primarily arises from its methyltransferase function, which contributes to the establishment of a condensed and transcriptionally inactive heterochromatin state. This results in the inactivation of genes that typically hinder cancer development and silencing of retrotransposons that could potentially trigger an immune response. These findings underscore the substantial potential for SETDB1 as an anti-tumor therapeutic target. Nevertheless, despite significant strides in recent years in tumor biology research, challenges persist in SETDB1-targeted therapy. To better facilitate the development of anti-tumor therapy targeting SETDB1, we have conducted a comprehensive review of SETDB1 in this account. We present the structure and function of SETDB1, its role in various tumors and immune regulation, as well as the advancements made in SETDB1 antagonists. Furthermore, we discuss the challenges encountered and provide perspectives for the development of SETDB1-targeted anti-tumor therapy.


Assuntos
Histonas , Neoplasias , Humanos , Histonas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Neoplasias/tratamento farmacológico , Metilação
16.
Med Oncol ; 41(2): 54, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206539

RESUMO

SLFN11 is abnormally expressed and associated with survival outcomes in various human cancers. However, the role of SLFN11 in clear cell renal cell carcinoma (ccRCC) remains unclear. This study aimed to investigate the clinical value and potential functions of SLFN11 in ccRCC. Comprehensive bioinformatics analyses were performed using online databases. Quantitative real-time PCR (qPCR) and western blotting were used to validate the expression data. CCK8, flow cytometry analysis, and EdU staining were performed to determine the level of cell proliferation. Flow cytometry analysis was also used to detect cell apoptosis. Wound-healing assay and Transwell assays were performed to assess cell migration and invasion capability, respectively. SLFN11 was overexpressed and was an independent prognostic factor in ccRCC. SLFN11 knockdown inhibited cell proliferation, migration, and invasion and promoted apoptosis. Functional and pathway enrichment analyses suggested that SLFN11 may have an impact on tumorigenesis in ccRCC through regulation of the inflammatory response, the PI3K/AKT signaling pathway and other effectors. Furthermore, SLFN11 knockdown inhibited the phosphorylation of the PI3K/AKT signaling pathway and could be activated by 740 Y-P. Finally, we demonstrated that miR-183 may specifically target SLFN11, and miR-183 expression was correlated with predicted survival. SLFN11 may play a critical role in ccRCC progression and may serve as a novel prognostic biomarker in ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , MicroRNAs , Humanos , Carcinoma de Células Renais/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Renais/genética , Transdução de Sinais , MicroRNAs/genética , Proteínas Nucleares
17.
Small Methods ; 8(2): e2300243, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37491782

RESUMO

Polymer-based room-temperature phosphorescence (RTP) materials, especially polysaccharide-based RTP materials, earn sustained attention in the fields of anti-counterfeiting, data encryption, and optoelectronics owing to their green regeneration, flexibility, and transparency. However, those with both ultralong phosphorescence lifetime and excitation wavelength-dependent afterglow are rarely reported. Herein, a kind of amorphous RTP material with ultralong lifetime of up to 2.52 s is fabricated by covalently bonding sodium alginate (SA) with arylboronic acid in the aqueous phase. The resulting polymer film exhibits distinguished RTP performance with excitation-dependent emissions from cyan to green. Specifically, by co-doping with other fluorescent dyes, further regulation of the afterglow color from cyan to yellowish-green and near-white can be achieved through triplet-to-singlet Förster resonance energy transfer. In addition, the water-sensitive properties of hydrogen bonds endow the RTP property of SA-based materials with water/heat-responsive characteristics. On account of the color-tunable and stimuli-responsive afterglows, these smart materials are successfully applied in data encryption and anti-counterfeiting.

18.
CEN Case Rep ; 13(2): 121-124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37490240

RESUMO

Patients with chronic kidney disease are already at an increased risk for pulmonary embolism, since loss of renal function rendered a procoagulant state. Further, malignant tumor is a well-established risk factor for pulmonary thromboembolism. Alternatively, occlusion of the pulmonary vasculature by tumor cells per se and associated thrombi may mimic thromboembolic disease. By comparison, however, report of pulmonary tumor embolism (PTE) in patients on maintenance hemodialysis (MHD) is exceedingly rare. A less vigilant clinician may have otherwise treated this situation as fluid overload or thromboembolic disorder. We herein described in an MHD patient such an unusual case of PTE, which was diagnosed by contrast-enhanced CT and PET/CT. As such, our work may expand the knowledge reserve of dialysis staffs about this rare complication of malignancy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Embolia Pulmonar , Humanos , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/diagnóstico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Diálise Renal/efeitos adversos , Neoplasias Hepáticas/complicações , Embolia Pulmonar/diagnóstico por imagem , Embolia Pulmonar/etiologia , Neoplasias Pulmonares/complicações
19.
Ground Water ; 62(2): 212-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37254684

RESUMO

The water shortage in agriculture area in China requires to reduce the consumption of excessive water in flood irrigation. Therefore, the dynamics of soil water regime is needed to investigate and water-saving irrigation is necessary to alleviate water shortage. This study investigated the impact of flood irrigation on soil water movement and recharge to groundwater in the Yellow River irrigation area of Yinchuan Plain, China. Combining comprehensive field observation, stable isotopic techniques and water balance simulation, we described the soil water mechanism in vadose zone covered with bare soil in 2019 and planted with maize in 2020. The soil layers affected by precipitation infiltration and evaporation were mainly 0-50 cm, while the soil influenced by irrigation was the entire profile in the mode of piston flow. The maize root took up the soil water up to the depth of 100 cm during the tasseling period. The infiltration and capillary rise in 2020 were similar with those in 2019. However, the total deep percolation was 156.5 mm in 2020 which was about 50% of that in 2019 because of the maize root water uptake. The leakage of ditch water was the major recharge resource of groundwater for the fast water table rise. Precise irrigation is required to minimize deep percolation and leakage of ditch water and reduce excessive unproductive evapotranspiration. Therefore, understanding the soil water movement and groundwater recharge is critical for agricultural water management to improve irrigation efficiency and water use efficiency in arid regions.


Assuntos
Água Subterrânea , Solo , Movimentos da Água , Inundações , Água , China , Irrigação Agrícola/métodos
20.
J Colloid Interface Sci ; 658: 238-246, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104406

RESUMO

Solar-driven desalination is an environmentally sustainable method to alleviate the problems of freshwater scarcity and the energy crisis. However, how to improve the synergy between the photothermal material and the evaporator to achieve high photothermal conversion efficiency simultaneously, excellent thermal management system and good salt resistance remains a challenge. Here, a mushroom-shaped solar evaporation device is designed and fabricated with iron diselenide/carbon black (FeSe2/CB) coated cellulose acetate (CA) film as mushroom surface and cotton swab as mushroom handle, which presented high solar-driven evaporation and excellent salt resistance. Thanks to the unique photothermal effect and the synergistic effect, the FeSe2/CB composites enabled a promising photothermal conversion efficiency of up to 65.8 °C after 180 s. The mushroom-shaped evaporation device effectively overcomes water transport and steam spillage channel blockage caused by salt crystallization through its unique vertical transport water channels and conical air-water interface. When exposed to real sunlight, the solar evaporation rate of the steam generation structure reached as high as 2.03 kg m-2 h-1, which is more than 13 times higher than natural evaporation. This study offered new insights into the higher solar-driven evaporation rate and salt-blocking resistance of the FeSe2/CB mushroom-shaped solar evaporation device for solar-powered water production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...