Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 21(20): 205701, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21825534

RESUMO

We measured the initial M-H curves for a sample of the newly discovered superconductor NdFeAsO(0.82)Fe(0.18), which had a critical temperature, T(c), of 51 K and was fabricated at the high pressure of 6 GPa. The lower critical field, H(c1), was extracted from the deviation point of the Meissner linearity in the M-H curves, which show linear temperature dependence in the low temperature region down to 5 K. The H(c1)(T) indicates no s-wave superconductivity, but rather an unconventional superconductivity with a nodal gap structure. Furthermore, the linearity of H(c1) at low temperature does not hold at high temperature, but shows other characteristics, indicating that this superconductor might have multi-gap features. Based on the low temperature nodal gap structure, we estimate that the maximum gap magnitude Δ(0) = (1.6 ± 0.2)  k(B)T(c).

2.
Phys Rev Lett ; 95(24): 247005, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16384412

RESUMO

We report the thickness-dependent (in terms of atomic layers) oscillation behavior of the perpendicular upper critical field Hc2perpendicular in the ultrathin lead films at the reduced temperature (t = T/Tc). Distinct oscillations of the normal-state resistivity as a function of film thickness have also been observed. Compared with the Tc oscillation, the Hc2perpendicular shows a considerable large oscillation amplitude and a pi phase shift. The oscillatory mean free path caused by the quantum size effect plays a role in Hc2perpendicular oscillation.

3.
Science ; 306(5703): 1915-7, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15591197

RESUMO

We have fabricated ultrathin lead films on silicon substrates with atomic-scale control of the thickness over a macroscopic area. We observed oscillatory behavior of the superconducting transition temperature when the film thickness was increased by one atomic layer at a time. This oscillating behavior was shown to be a manifestation of the Fabry-Perot interference modes of electron de Broglie waves (quantum well states) in the films, which modulate the electron density of states near the Fermi level and the electron-phonon coupling, which are the two factors that control superconductivity transitions. This result suggests the possibility of modifying superconductivity and other physical properties of a thin film by exploiting well-controlled and thickness-dependent quantum size effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...