Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1411963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070915

RESUMO

Naturally synthesized secondary metabolites in plants are considered an important source of drugs, food additives, etc. Among them, research on natural plant medicinal components and their synthesis mechanisms has always been of high concern. We identified a novel medicinal floral crop, Plumbago auriculata L., that can be treated with methyl jasmonate (MeJA) for the rapid or sustainable production of natural bioactives from hairy roots. In the study, we globally analyzed the changes in the accumulation of plumbagin and others in the hairy roots of Plumbago auriculata L. hairy roots (PAHR) 15834 in P. auriculata L. based on 100 µmol/L of MeJA treatment by RNA-seq profiling, and we found that there was a significant increase in the accumulation of plumbagin and saponin before 24 h. To explain the principle of co-accumulation, it showed that MeJA induced JA signaling and the shikimic acid pathway, and the methylvaleric acid (MVA) pathway was activated downstream subsequently by the Mfuzz and weighted gene co-expression analysis. Under the shared metabolic pathway, the high expression of PAL3 and HMGR promoted the activity of the "gateway enzymes" phenylalanine ammonia lyase (PAL) and 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), which respectively induced the high expression of key reaction enzyme genes, including chalcone synthase (CHS), isopentenyl diphosphate (IPP), and farnesyl pyrophosphate synthase (FPS), that led to the synthesis of plumbagin and saponin. We speculated that large amounts of ketones and/or aldehydes were formed under the action of these characteristic enzymes, ultimately achieving their co-accumulation through polyketone and high-level sugar and amino acid metabolism. The study results provided a theoretical basis for carrying out the factory refinement and biosynthesis of plumbagin and saponins and also provided new ideas for fully exploiting multifunctional agricultural crops and plants and developing new agricultural by-products.

2.
Front Plant Sci ; 15: 1376427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685960

RESUMO

Under salt stress, recretohalophyte Plumbago auriculata tetraploids enhance salt tolerance by increasing selective secretion of Na+ compared with that in diploids, although the mechanism is unclear. Using non-invasive micro-test technology, the effect of salt gland Ca2+ content on Na+ and K+ secretion were investigated in diploid and tetraploid P. auriculata under salt stress. Salt gland Ca2+ content and secretion rates of Na+ and K+ were higher in tetraploids than in diploids under salt stress. Addition of exogenous Ca2+ increased the Ca2+ content of the salt gland in diploids and is accompanied by an increase in the rate of Na+ and K+ secretion. With addition of a Ca2+ channel inhibitor, diploid salt glands retained large amounts of Ca2+, leading to higher Ca2+ content and Na+ secretion rate than those of tetraploids. Inhibiting H2O2 generation and H+-ATPase activity altered Na+ and K+ secretion rates in diploids and tetraploids under salt stress, indicating involvement in regulating Na+ and K+ secretion. Our results indicate that the increased Na+ secretion rate of salt gland in tetraploids under salt stress was associated with elevated Ca2+ content in salt gland.

3.
Planta ; 257(3): 52, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757459

RESUMO

MAIN CONCLUSION: Enhanced secretion of Na+ and Cl- in leaf glands and leaf vacuolar sequestration of Na+ or root retention of Cl-, combined with K+ retention, contribute to the improved salt tolerance of tetraploid recretohalophyte P. auriculata. Salt stress is one of the major abiotic factors threatening plant growth and development, and polyploids generally exhibit higher salt stress resistance than diploids. In recretohalophytes, which secrete ions from the salt gland in leaf epidermal cells, the effects of polyploidization on ion homeostasis and secretion remain unknown. In this study, we compared the morphology, physiology, and ion homeostasis regulation of diploid and autotetraploid accessions of the recretohalophyte Plumbago auriculata Lam. after treatment with 300 mM NaCl for 0, 2, 4, 6, and 8 days. The results showed that salt stress altered the morphology, photosynthetic efficiency, and chloroplast structure of diploid P. auriculata to a greater extent than those of its tetraploid counterpart. Moreover, the contents of organic osmoregulatory substances (proline and soluble sugars) were significantly higher in the tetraploid than in the diploid, while those of H2O2 and malondialdehyde (MDA) were significantly lower. Analysis of ion homeostasis revealed that the tetraploid cytotype accumulated more Na+ in stems and leaves and more Cl- in roots but less K+ loss in roots compared with diploid P. auriculata. Additionally, the rate of Na+ and Cl- secretion from the leaf surface was higher, while that of K+, Mg2+, and Ca2+ secretion was lower in tetraploid plants. X-ray microanalysis of mesophyll cells revealed that Na+ mainly accumulated in different cellular compartments in the tetraploid (vacuole) and diploid (cytoplasm) plants. Our results suggest that polyploid recretohalophytes require the ability to sequester Na+ and Cl-(via accumulation in leaf cell vacuoles or unloading by roots) and selectively secrete these ions (through salt glands) together with the ability to prevent K+ loss (by roots). This mechanism required to maintain K+/Na+ homeostasis in polyploid recretohalophytes under high salinity provides new insights in the improved maintenance of ion homeostasis in polyploids under salt stress.


Assuntos
Plumbaginaceae , Tetraploidia , Plumbaginaceae/genética , Tolerância ao Sal , Peróxido de Hidrogênio , Sódio , Poliploidia , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...