Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Biophys Mol Biol ; 187: 36-50, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280492

RESUMO

Tissue repair and regeneration is a vital biological process in organisms, which is influenced by various internal mechanisms and microenvironments. Pulsed electromagnetic fields (PEMFs) are becoming a potential medical technology due to its advantages of effectiveness and non-invasiveness. Numerous studies have demonstrated that PEMFs can stimulate stem cell proliferation and differentiation, regulate inflammatory reactions, accelerate wound healing, which is of great significance for tissue regeneration and repair, providing a solid basis for enlarging its clinical application. However, some important issues such as optimal parameter system and potential deep mechanisms remain to be resolved due to PEMFs window effect and biological complexity. Thus, it is of great importance to comprehensively summarizing and analyzing the literature related to the biological effects of PEMFs in tissue regeneration and repair. This review expounded the biological effects of PEMFs on stem cells, inflammation response, wound healing and musculoskeletal disorders in order to improve the application value of PEMFs in medicine. It is believed that with the continuous exploration of biological effects of PEMFs, it will be applied increasingly widely to tissue repair and other diseases.


Assuntos
Campos Eletromagnéticos , Células-Tronco Mesenquimais , Diferenciação Celular , Cicatrização , Células-Tronco
2.
J Geriatr Cardiol ; 20(10): 707-715, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37970223

RESUMO

BACKGROUND: Patients with atrial fibrillation (AF) and prior stroke history have a high risk of cardiovascular events despite anticoagulation therapy. It is unclear whether catheter ablation (CA) has further benefits in these patients. METHODS: AF patients with a previous history of stroke or systemic embolism (SE) from the prospective Chinese Atrial Fibrillation Registry study between August 2011 and December 2020 were included in the analysis. Patients were matched in a 1:1 ratio to CA or medical treatment (MT) based on propensity score. The primary outcome was a composite of all-cause death or ischemic stroke (IS)/SE. RESULTS: During a total of 4.1 ± 2.3 years of follow-up, the primary outcome occurred in 111 patients in the CA group (3.3 per 100 person-years) and in 229 patients in the MT group (5.7 per 100 person-years). The CA group had a lower risk of the primary outcome compared to the MT group [hazard ratio (HR) = 0.59, 95% CI: 0.47-0.74, P < 0.001]. There was a significant decreasing risk of all-cause mortality (HR = 0.43, 95% CI: 0.31-0.61, P < 0.001), IS/SE (HR = 0.73, 95% CI: 0.54-0.97, P = 0.033), cardiovascular mortality (HR = 0.32, 95% CI: 0.19-0.54, P < 0.001) and AF recurrence (HR = 0.33, 95% CI: 0.30-0.37, P < 0.001) in the CA group compared to that in the MT group. Sensitivity analysis generated consistent results when adjusting for time-dependent usage of anticoagulants. CONCLUSIONS: In AF patients with a prior stroke history, CA was associated with a lower combined risk of all-cause death or IS/SE. Further clinical trials are warranted to confirm the benefits of CA in these patients.

3.
Biomacromolecules ; 24(12): 5859-5870, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38015033

RESUMO

Nano scale topography scaffold is more bioactive and biomimetic than smooth fiber topographies. Tendon stem cells (TSCs) play important roles in the tendinogenesis of tendon tissue engineering, but the effects and mechanisms of nano topography on TSC behavior are still unclear. This study determined whether the morphology, proliferation, cytoskeleton, and differentiation of TSCs are affected by topography of scaffold in vitro. The porous PA56 scaffolds were prepared with different concentration ratios of glycerol as the molecular template by electrospinning. Its topological characteristics, hydrophilicity, and degradation properties varied with glycerol proportion and movement rate of the receiving plate. Porous fibers promoted the proliferation of TSCs and the number of TSCs varied with topography. Although there was no significant difference due to the small sample size, the number of pseudopodia and cell polarizability still showed differences among different topographies. The morphology of actin cytoskeleton of TSCs showed difference among cultured on porous fibers, smooth fibers, and in culture media with no fiber, suggesting the orientation growth of cells on porous fiber. Moreover, porous fibers promoted teno-lineage differentiation of TSCs by upregulating tendon-specific gene expression. These findings provide evidence that nano porous topography scaffold promotes TSC proliferation, cytoskeleton orientation, and tenogenic differentiation.


Assuntos
Glicerol , Nanoporos , Tendões , Células-Tronco , Engenharia Tecidual , Diferenciação Celular , Proliferação de Células
4.
Colloids Surf B Biointerfaces ; 228: 113393, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327653

RESUMO

The mechanical properties of a stem cell culture substrate significantly impact cell adhesion, survival, migration, proliferation, and differentiation in vitro. A major challenge in engineering artificial stem cell substrate is to properly identify the relevant physical features of native stem cell niches, which are likely different for each stem cell type. The behavior of tendon stem cells has potentially significant implications for tendon repair. Here, microfiber scaffolds with various modulus of elasticity are fabricated by near-field electrospinning, and their regulating effects on the in vitro behavior of tendon stem cells (TSCs) are discussed in this study. The number of pseudopodia shows a biphasic relationship with the modulus of scaffold. The proliferation, polarization ratio and alignment degree along the fibers of the TSCs increase with the increase of fiber modulus. TSCs cultured on the scaffold with moderate modulus (1429 MPa) show the upregulation of tendon-specific genes (Col-I, Tnmd, SCX and TNCF). These microfiber scaffolds provide great opportunities to modulate TSCs behavior at the micrometer scales. In conclusion, this study provides an instructive mechanical microenvironment for TSCs behaviors and may lead to the development of desirable engineered artificial stem cell substrate for tendon healing.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Tendões , Células-Tronco , Diferenciação Celular/genética , Expressão Gênica , Proliferação de Células , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...