Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(6): 664-668, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38991970

RESUMO

Resveratrol is a polyphenolic plant extract with many biological activities such as anti-inflammation and anti-oxidative stress. Vascular endothelial cell (VEC) is the main sites for maintaining normal vascular permeability and participating in vasomotor regulation and substance exchange. VEC injury plays a key role in various diseases or pathological processes such as cardiovascular disease, chronic inflammation and sepsis. Studies have shown that resveratrol protects VEC and reduces endothelial damage by regulating nitric oxide (NO) and its related enzymes, reducing oxidative stress and inhibiting apoptosis, thereby exerting beneficial effects.


Assuntos
Células Endoteliais , Óxido Nítrico , Resveratrol , Estilbenos , Resveratrol/farmacologia , Humanos , Células Endoteliais/efeitos dos fármacos , Estilbenos/farmacologia , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos
2.
Animal Model Exp Med ; 7(2): 106-113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38720238

RESUMO

BACKGROUND: Androgenic alopecia (AGA) is the most common type of hair loss in men, and there are many studies on the treatment of hair loss by platelet-rich plasma (PRP). The human scalp contains a huge microbiome, but its role in the process of hair loss remains unclear, and the relationship between PRP and the microbiome needs further study. Therefore, the purpose of this study was to investigate the effect of PRP treatment on scalp microbiota composition. METHODS: We performed PRP treatment on 14 patients with AGA, observed their clinical efficacy, and collected scalp swab samples before and after treatment. The scalp microflora of AGA patients before and after treatment was characterized by amplifying the V3-V4 region of the 16 s RNA gene and sequencing for bacterial identification. RESULTS: The results showed that PRP was effective in the treatment of AGA patients, and the hair growth increased significantly. The results of relative abundance analysis of microbiota showed that after treatment, g_Cutibacterium increased and g_Staphylococcus decreased, which played a stable role in scalp microbiota. In addition, g_Lawsonella decreased, indicating that the scalp oil production decreased after treatment. CONCLUSIONS: The findings suggest that PRP may play a role in treating AGA through scalp microbiome rebalancing.


Assuntos
Alopecia , Microbiota , Plasma Rico em Plaquetas , Couro Cabeludo , Humanos , Alopecia/terapia , Alopecia/microbiologia , Masculino , Adulto , Couro Cabeludo/microbiologia , Pessoa de Meia-Idade , Adulto Jovem
3.
Shock ; 61(3): 414-423, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150357

RESUMO

ABSTRACT: Posthemorrhagic shock mesenteric lymph (PHSML) return-contributed excessive autophagy of vascular smooth muscle cells (VSMCs) is involved in vascular hyporeactivity, which is inhibited by stellate ganglion block (SGB) treatment. The contractile phenotype of VSMCs transforms into a synthetic phenotype after stimulation with excessive autophagy. Therefore, we hypothesized that SGB ameliorates PHSML-induced vascular hyporeactivity by inhibiting autophagy-mediated phenotypic transformation of VSMCs. To substantiate this hypothesis, a hemorrhagic shock model in conscious rats was used to observe the effects of SGB intervention or intravenous infusion of the autophagy inhibitor 3-methyladenine (3-MA) on intestinal blood flow and the expression of autophagy- and phenotype-defining proteins in mesenteric secondary artery tissues. We also investigated the effects of intraperitoneal administration of PHSML intravenous infusion and the autophagy agonist rapamycin (RAPA) on the beneficial effect of SGB. The results showed that hemorrhagic shock decreased intestinal blood flow and enhanced the expression of LC3 II/I, Beclin 1, and matrix metalloproteinase 2, which were reversed by SGB or 3-MA treatment. In contrast, RAPA and PHSML administration abolished the beneficial effects of SGB. Furthermore, the effects of PHSML or PHSML obtained from rats treated with SGB (PHSML-SGB) on cellular contractility, autophagy, and VSMC phenotype were explored. Meanwhile, the effects of 3-MA on PHSML and RAPA on PHSML-SGB were observed. The results showed that PHSML, but not PHSML-SGB, incubation decreased VSMC contractility and induced autophagy activation and phenotype transformation. Importantly, 3-MA administration reversed the adverse effects of PHSML, and RAPA treatment attenuated the effects of PHSML-SGB incubation on VSMCs. Taken together, the protective effect of SGB on vascular reactivity is achieved by inhibiting excessive autophagy-mediated phenotypic transformation of VSMCs to maintain their contractile phenotype.


Assuntos
Choque Hemorrágico , Ratos , Animais , Choque Hemorrágico/metabolismo , Músculo Liso Vascular , Metaloproteinase 2 da Matriz/farmacologia , Gânglio Estrelado/metabolismo , Fenótipo , Autofagia , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
4.
Shock ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37878471

RESUMO

BACKGROUND: Recent studies have shown that ferroptosis is involved in the evolution of acute lung injury (ALI), a serious respiratory pathological process leading to death. However, the regulatory mechanisms underlying ferroptosis in ALI remain largely unknown. The current study analyzed and identified a ferroptosis-related gene signature for ALI. METHODS: Key genes associated with ferroptosis in ALI were identified by bioinformatics analysis. GSE104214, GSE18341, and GSE17355 datasets were downloaded from the Gene Expression Omnibus database. The signature genes were screened by least absolute shrinkage and selection operator (LASSO) regression, and the key genes of ALI were screened by weighted correlation network analysis (WGCNA), followed by immune infiltration analysis and functional enrichment analysis. In addition, mRNA expression of key genes in the lungs of mice with hemorrhagic shock and sepsis was verified. RESULTS: A total of 2132 differential genes were identified by various analyses, and nine characteristic genes were detected using Lasso regression. We intersected nine signature genes with WGCNA module genes and finally determined four key genes (PROK2, IL6, TNF, SLC7A11). All four key genes were closely correlated with immune cells and regulatory genes of ALI, and the expression of the four genes was significantly different in the lung tissues of hemorrhagic shock and sepsis models. Besides, the ferroptosis related molecules GPX4 and ACSL4 showed remarkable difference in these models. CONCLUSION: These results indicate that PROK2, IL6, TNF, SLC7A11 may be key regulatory targets of ferroptosis during ALI. This study proved that ferroptosis is a common pathophysiological process in three ALI models.

5.
Funct Integr Genomics ; 23(2): 95, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36944896

RESUMO

Atopic dermatitis (AD) is composed of highly flexible cellular participants. To better understand its pathobiology and molecular regulation mechanisms, it is necessary to combine single-cell RNA sequencing (scRNA-seq) with new computing frameworks or specific technologies, which may contribute to the development of better treatments for AD. The scRNA-seq data of GSE180885 and bulk RNA-seq data of GSE193309 were obtained from Gene Expression Omnibus (GEO) database, and the scRNA-seq data was analyzed by Seurat package to identify the cell types in AD. The genes related to the activity of AD topical drugs were obtained from the ChEMBL database, which provided a variety of bioactivity data such as multiple drugs and targets. AD-related genes were obtained from DisGeNET and CTD databases synthesizing human disease-related genes; the intersection of AD-related genes from these three sources with differentially expressed genes (DEGs) between non-diseased AD and normal human skin (NHS) samples and differential cell type marker genes was taken. The proximity analysis of drug gene network was performed based on the gene with the largest area of receiver operating characteristic (ROC) curve. Ten distinct cell types of AD and NHS were identified, except for phagocytes cells. Three hub genes, F10 and CALCRL and CTSB, were obtained. The area under the curve of ROC based on CTSB expression was the largest, which was 60.15%. By binding drug CTSB-related gene interaction network, we identified 145 potential drugs. Among them, the score of DB07045 and CTSB docking was the lowest, and molecular docking and molecular dynamics (MD) simulation confirmed the close and stable binding of DB07045 and cathepsin B. This work identified diagnostic molecules and potential therapeutic drugs of AD by scRNA-seq combined with a systematic computing framework of network pharmacology, which may provide valuable clues for drug design.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Perfilação da Expressão Gênica , Farmacologia em Rede , Simulação de Acoplamento Molecular , RNA-Seq
6.
Shock ; 59(5): 754-762, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36840514

RESUMO

ABSTRACT: Background: Hemorrhagic shock-induced acute lung injury (ALI) is commonly associated with the posthemorrhagic shock mesenteric lymph (PHSML) return. Whether excessive autophagy is involved in PHSML-mediated ALI remains unclear. The relationship between estrogen treatment and PHSML or autophagy needs to verify. The current study will clarify the role of estrogen in reducing PHSML-mediated ALI through inhibition of autophagy. Methods: First, a hemorrhagic shock model in conscious rats was used to observe the effects of 17ß-estradiol (E2) on intestinal blood flow, pulmonary function, intestinal and pulmonary morphology, and expression of autophagy marker proteins. Meanwhile, the effect of PHSML and autophagy agonist during E2 treatment was also investigated. Secondly, rat primary pulmonary microvascular endothelial cells were used to observe the effect of PHSML, PHSML plus E2, and E2-PHSML (PHSML obtained from rats treated by E2) on the cell viability. Results: Hemorrhagic shock induced intestinal and pulmonary tissue damage and increased wet/dry ratio, reduced intestinal blood flow, along with pulmonary dysfunction characterized by increased functional residual capacity and lung resistance and decreased inspiratory capacity and peak expiratory flow. Hemorrhagic shock also enhanced the autophagy levels in intestinal and pulmonary tissue, which was characterized by increased expressions of LC3 II/I and Beclin-1 and decreased expression of p62. E2 treatment significantly attenuated these adverse changes after hemorrhagic shock, which was reversed by PHSML or rapamycin administration. Importantly, PHSML incubation decreased the viability of pulmonary microvascular endothelial cells, while E2 coincubation or E2-treated lymph counteracted the adverse roles of PHSML. Conclusions: The role of estrogen reducing PHSML-mediated ALI is associated with the inhibition of autophagy.


Assuntos
Lesão Pulmonar Aguda , Choque Hemorrágico , Ratos , Animais , Ratos Sprague-Dawley , Choque Hemorrágico/complicações , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Células Endoteliais/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Estrogênios/farmacologia , Estrogênios/uso terapêutico , Autofagia
7.
Respir Physiol Neurobiol ; 310: 104003, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36566003

RESUMO

Severe hemorrhage-induced acute lung injury (ALI) remains the major contributor to critical patient mortality and is associated with posthemorrhagic shock mesenteric lymph (PHSML) return. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) play overall protection on acute hemorrhage, but a reliable mechanism needs to be identified. The aims of this study were to investigate the role of ω-3 PUFAs in alleviating ALI and whether is related to the endotoxin contained in PHSML. Mesenteric lymph was harvested from rats subjected to hemorrhagic shock (hemorrhage-induced hypotension of 40 ± 2 mmHg for 90 min plus by resuscitation) or sham shock. The effect of ω-3 PUFAs on pulmonary function, water content, morphology, and LBP, CD14, TNF-α, and IL-6 levels were observed in rats subjected to hemorrhagic shock, while the effect of PHSML intravenous infusion on the beneficial effect of ω-3 PUFAs also was investigated. In addition, the effect of ω-3 PUFAs on the endotoxin contents in mesenteric lymph were detected. Hemorrhagic shock-induced ALI was characterized by increased functional residual capacity (FRC), lung resistance (RI), inspiratory capacity (IC), respiratory frequency, water contents and structural damage, along with increases in LBP, IL-6, and TNF-α. ω-3 PUFAs treatment reduced FRC, RI, IC, frequency, water contents, LBP, IL-6, TNF-α, and alleviated morphological damage. In contrast, PHSML infusion abolished the advantageous effects of ω-3 PUFAs on the above indices and CD14. Furthermore, the endotoxin level of PHSML was significantly enhanced, but declined following ω-3 PUFAs administration. These findings together suggested that treatment with ω-3 PUFAs ameliorates hemorrhagic shock-induced ALI, which is associated with reduced endotoxin contained in PHSML.


Assuntos
Lesão Pulmonar Aguda , Choque Hemorrágico , Ratos , Animais , Choque Hemorrágico/complicações , Choque Hemorrágico/tratamento farmacológico , Fator de Necrose Tumoral alfa , Interleucina-6 , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Ácidos Graxos Insaturados
8.
Shock ; 59(2): 256-266, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427100

RESUMO

ABSTRACT: Dendritic cell (DC)-mediated immune dysfunction is involved in the process of severe hemorrhagic shock that leads to sepsis. Although post-hemorrhagic shock mesenteric lymph (PHSML) induces immune organs injuries and apoptosis, whether PHSML exerts adverse effects on splenic DCs remains unknown. In this study, we established a hemorrhagic shock model (40 ± 2 mm Hg for 60 min) followed by fluid resuscitation with the shed blood and equal Ringer's solution and drained the PHSML after resuscitation. At 3 h after resuscitation, we harvested the splenic tissue to isolate DCs using anti-CD11c immunomagnetic beads and then detected the necrotic and apoptotic rates in splenocytes and splenic DCs. We also detected the levels of TNF-α, IL-10, and IL-12 in the culture supernatants and surface marker expressions of MHC-II, CD80, and CD86 of splenic DCs following LPS stimulation for 24 h. Second, we purified the DCs from splenocytes of normal mice to investigate the effects of PHSML treatment on cytokine production and surface marker expression following LPS stimulation. The results showed that PHSML drainage attenuated LPS-induced cell death of splenocytes and DCs. Meanwhile, PHSML drainage enhanced the DC percentage in splenocytes and increased the TNF-α and IL-12 production by DCs and the expressions of CD80, CD86, and MHCII of DCs treated by LPS. Furthermore, PHSML treatment reduced the productions of TNF-α, IL-10, and IL-12 and the expressions of CD80 and CD86 in normal DCs after treatment with LPS. In summary, the current investigation demonstrated that PHSML inhibited the cytokine production and surface marker expressions of DCs stimulated by LPS, suggesting that PHSML plays an important role in hemorrhagic shock-induced immunosuppression through the impairment of DC function and maturation.


Assuntos
Choque Hemorrágico , Humanos , Choque Hemorrágico/terapia , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Interleucina-12/metabolismo , Células Dendríticas/metabolismo
9.
Int Wound J ; 20(5): 1491-1497, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36321334

RESUMO

This study was aimed to evaluate the clinical efficacy of flap transplantation combined with vacuum sealing drainage and methylprednisolone and cyclosporine in the treatment of ulcer wound of patients with pyoderma gangrenosum (PG). From August 2014 to February 2022, 30 patients with pyoderma gangrenosum ulcer wounds were selected as the research objects and randomly divided into the observation group (n = 12) and the control group (n = 18) in this retrospective study. The patients in observation group were treated with VSD combined with flap transplantation and immunosuppressive agent treatment, while the control group was treated with normal dressing change combined with hormone and cyclosporine. The ulcer wound healing time and dressing change times were compared between the two groups. All the 30 cases of two groups healed after corresponding treatment. The wound healing time of ulcer in the observation group was 35-40 days, with an average healing time of (35.83 ± 1.95) days, and the wound healing time of the control group was 60-200 days, with an average healing time of (44.14 ± 9.67) days. The healing time of observation groups was significantly shorter than that in the control group (t = 4.652, P < .05). The frequency of dressing change in the observation group was seven-eight times, with an average of (7.17 ± 0.39) times, and the frequency of dressing change in the control group was 75-86 times, with an average of (79.22 ± 3.62) times. The difference between the two groups was significant (t = 6.214, P < .05). The treatment of VSD combined with flap transplantation and immunosuppressive agent treatment promote ulcer wound healing of pyoderma gangrenosum.


Assuntos
Tratamento de Ferimentos com Pressão Negativa , Pioderma Gangrenoso , Humanos , Ciclosporina , Drenagem , Imunossupressores , Metilprednisolona , Estudos Retrospectivos , Resultado do Tratamento , Úlcera
10.
ACS Appl Mater Interfaces ; 14(48): 53819-53827, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36414243

RESUMO

Developing low-loading Pt-based catalysts possessing glorious catalytic performance can accelerate oxygen reduction reaction (ORR) and hence significantly advance the commercialization of proton exchange membrane fuel cells. In this report, we propose a hybrid catalyst that consists of low-loading sub-3 nm PtCo intermetallic nanoparticles carried on Co-N-C (PtCo/Co-N-C) via the microwave-assisted polyol procedure and subsequent heat treatment. Atomically dispersed Co atoms embedded in the Co-N-C carriers diffuse into the lattice of Pt, thus forming ultrasmall PtCo intermetallic nanoparticles. Owing to the dual effect of the enhanced metal-support interaction and alloy effect, as-fabricated PtCo/Co-N-C catalysts deliver an extraordinary performance, achieving a half-wave potential of 0.921 V, a mass activity of 0.700 A mgPt-1@0.9 V, and brilliant durability in the acidic medium. The fuel cell employing PtCo/Co-N-C as the cathode catalyst with an ultralow Pt loading of 0.05 mg cm-2 exhibits an impressive peak power density of 0.700 W cm-2, higher than that of commercial Pt/C under the same condition. Furthermore, the enhanced intrinsic ORR activity and stability are imputed to the downshifted d-band center and the strengthened metal-support interaction, as revealed by density functional theory calculations. This report affords a facile tactic to fabricate Pt-based alloy composite catalysts, which is also applicable to other alloy catalysts.

11.
Adv Med Sci ; 67(2): 364-378, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36155341

RESUMO

PURPOSE: Although skin cutaneous melanoma (SKCM) is a relatively immunotherapy-sensitive tumor type, there is still a certain fraction that benefits less from treatment. Ferroptosis has been demonstrated to modulate tumor progression in many cancer types. This study focused on ferroptosis-related genes to construct a prognostic model for SKCM patients. MATERIALS AND METHODS: Gene expression profiles of SKCM samples were obtained from public databases. Unsupervised consensus clustering was used to determine molecular subtypes related to ferroptosis. Least absolute shrinkage and selection operator (LASSO) and stepwise Akaike information criterion (stepAIC) were applied to construct a prognostic model based on differentially expressed genes between two molecular subtypes. RESULTS: C1 and C2 subtypes were identified with differential prognosis and immune infiltration. A 7-gene prognostic model was constructed to classify samples into high-FPRS and low-FPRS groups. Low-FPRS group with favorable prognosis had higher immune infiltration and more enriched immune-related pathways than the high-FPRS group. The two groups showed distinct sensitivity to immunotherapy, with the low-FPRS group predicted to have more positive response to immunotherapy than the high-FPRS group. A nomogram based on the FPRS score and clinical features was built for more convenient use. CONCLUSIONS: The critical role of ferroptosis involved in SKCM development was further validated in this study. The prognostic model was efficient and stable to be applied in clinical conditions to support clinicians in determining personalized therapy for SKCM patients especially those with metastasis.


Assuntos
Ferroptose , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/terapia , Melanoma/metabolismo , Prognóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/metabolismo , Ferroptose/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Imunoterapia , Melanoma Maligno Cutâneo
12.
3 Biotech ; 12(9): 229, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35992897

RESUMO

In the gastrointestinal tract, some dietary carbohydrates, such as xylose, raffinose and arabinose, are able to stimulate the growth of Lactobacillus and Bifidobacterium. In this study, the growth rate of Ligilactobacillus salivarius Ren in raffinose was 0.91 ± 0.03 h-1, which was higher than that in glucose (0.83 ± 0.01 h-1). However, limited information is available on specific transporters and glycoside hydrolases responsible for raffinose uptake and catabolism in L. salivarius. Transcriptomic analysis revealed the differential expression of 236 genes (∣log2FoldChange∣ > 0.8) in response to raffinose, which were mainly associated with raffinose transport, raffinose hydrolysis, galactose metabolism and pyruvate metabolism. Notably, gene rafP encoding lactose/raffinose permease was 101.86-fold up-regulated. Two α-galactosidase gene galA1 and galA2 were 117.82-fold and 2.66-fold up-regulated, respectively. To further investigate the role of these genes in raffinose utilization, insertional inactivation was performed using the pORI28-pTRK669 system. The growth assay of these mutants in modified MRS containing 2% (w/v) raffinose indicated that RafP played an important role in raffinose transport and GalA1 was the primary enzyme involved in raffinose hydrolysis. To our knowledge, this is the first report on the molecular mechanism of raffinose utilization in L. salivarius. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03280-6.

13.
Front Immunol ; 13: 838618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572554

RESUMO

Purpose: Post hemorrhagic shock mesenteric lymph (PHSML) return contributes to CD4+ T cell dysfunction, which leads to immune dysfunction and uncontrolled inflammatory response. Tumor necrosis factor α induced protein 8 like-2 (TIPE2) is one of the essential proteins to maintain the immune homeostasis. This study investigated the role of TIPE2 in regulation of CD4+ T lymphocyte function in interaction of PHSML and TLR2/TLR4. Methods: The splenic CD4+ T cells were isolated from various mice (WT, TLR2-/-, TLR4-/-) by immunomagnetic beads, and stimulated with PHSML, normal lymphatic fluid (NML), respectively. Application of TIPE2-carrying interfering fragments of lentivirus were transfected to WT, TLR4-/-, and TLR2-/- CD4+ T cells, respectively. After interference of TIPE2, they were stimulated with PHSML and NML for the examinations of TIPE2, TLR2, and TLR4 mRNA expressions, proliferation, activation molecules on surface, and cytokine secretion function. Results: PHSML stimulation significantly upregulated TIPE2, TLR2, and TLR4 mRNA expressions, decreased proliferation, CD25 expression, and IFN-γ secretion, and increased the secretion ability of IL-4 in WT CD4+ T cells. TIPE2 silencing enhanced proliferative capacity, upregulated CD25 expression, and increased IFNγ secretion in CD4+ T cells. PHSML stimulated TLR2-/-CD4+ T or TLR4-/-CD4+ T cells of which TIPE2 were silenced. TLR2 or TLR4 knockout attenuated PHSML-induced CD4+ T cells dysfunction; PHSML stimulation of silent TIPE2-expressing TLR2-/-CD4+ T or TLR4-/-CD4+ T revealed that the coexistence of low TIPE2 expression with lack of TLR2 or TLR4 eliminated this beneficial effect. Conclusion: TIPE2 improves the PHSML-mediated CD4+T cells dysfunction by regulating TLR2/TLR4 pathway, providing a new intervention target following hemorrhagic shock-induced immune dysfunction.


Assuntos
Choque Hemorrágico , Animais , Linfócitos T CD4-Positivos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , RNA Mensageiro , Choque Hemorrágico/complicações , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like
14.
Front Neurosci ; 16: 848079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250473

RESUMO

Exercise training has profound effects on the renin-angiotensin system, inflammatory cytokines and oxidative stress, all of which affect autonomic nervous system activity and regulate blood pressure (BP) in both physiological and pathophysiological states. Using the Induction-Delay-Expression paradigm, our previous studies demonstrated that various challenges (stressors) during Induction resulted in hypertensive response sensitization (HTRS) during Expression. The present study tested whether voluntary exercise would protect against subpressor angiotensin (ANG) II-induced HTRS in rats. Adult male rats were given access to either "blocked" (sedentary rats) or functional running (exercise rats) wheels for 12 weeks, and the Induction-Delay-Expression paradigm was applied for the rats during the last 4 weeks. A subpressor dose of ANG II given during Induction produced an enhanced hypertensive response to a pressor dose of ANG II given during Expression in sedentary rats in comparison to sedentary animals that received saline (vehicle control) during Induction. Voluntary exercise did not attenuate the pressor dose of ANG II-induced hypertension but prevented the expression of HTRS seen in sedentary animals. Moreover, voluntary exercise reduced body weight gain and feed efficiency, abolished the augmented BP reduction after ganglionic blockade, reversed the increased mRNA expression of pro-hypertensive components, and upregulated mRNA expression of antihypertensive components in the lamina terminalis and hypothalamic paraventricular nucleus, two key brain nuclei involved in the control of sympathetic activity and BP regulation. These results indicate that exercise training plays a beneficial role in preventing HTRS and that this is associated with shifting the balance of the brain prohypertensive and antihypertensive pathways in favor of attenuated central activity driving sympathetic outflow and reduced BP.

16.
Oxid Med Cell Longev ; 2022: 6371048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069977

RESUMO

Hemorrhagic shock is associated with activation of renin-angiotensin system (RAS) and endoplasmic reticulum stress (ERS). Previous studies demonstrated that central RAS activation produced by various challenges sensitizes angiotensin (Ang) II-elicited hypertension and that ERS contributes to the development of neurogenic hypertension. The present study investigated whether controlled hemorrhage could sensitize Ang II-elicited hypertension and whether the brain RAS and ERS mediate this sensitization. Results showed that hemorrhaged (HEM) rats had a significantly enhanced hypertensive response to a slow-pressor infusion of Ang II when compared to sham HEM rats. Treatment with either angiotensin-converting enzyme (ACE) 1 inhibitor, captopril, or ACE2 activator, diminazene, abolished the HEM-induced sensitization of hypertension. Treatment with the ERS agonist, tunicamycin, in sham HEM rats also sensitized Ang II-elicited hypertension. However, blockade of ERS with 4-phenylbutyric acid in HEM rats did not alter HEM-elicited sensitization of hypertension. Either HEM or ERS activation produced a greater reduction in BP after ganglionic blockade, upregulated mRNA and protein expression of ACE1 in the hypothalamic paraventricular nucleus (PVN), and elevated plasma levels of Ang II but reduced mRNA expression of the Ang-(1-7) receptor, Mas-R, and did not alter plasma levels of Ang-(1-7). Treatment with captopril or diminazene, but not phenylbutyric acid, reversed these changes. No treatments had effects on PVN protein expression of the ERS marker glucose-regulated protein 78. The results indicate that controlled hemorrhage sensitizes Ang II-elicited hypertension by augmenting RAS prohypertensive actions and reducing RAS antihypertensive effects in the brain, which is independent of ERS mechanism.


Assuntos
Angiotensina II/efeitos adversos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hemorragia/induzido quimicamente , Hipertensão/induzido quimicamente , Sistema Renina-Angiotensina/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Humanos , Masculino , Ratos , Ratos Wistar
17.
Front Physiol ; 12: 728191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621184

RESUMO

Objective: The aim of this study was to clarify the role of autophagy in stellate ganglion block (SGB) reversing posthemorrhagic shock mesenteric lymph (PHSML)-mediated vascular hyporeactivity. Methods: Hemorrhagic shock model in conscious rats was employed to observe the effects of SGB (0.2 ml of 0.25% ropivacaine hydrochloride hydrate) and autophagy inhibitor 3-methyladenine (3-MA; 30 mg/kg) on the vascular reactivity of second-order rat mesenteric arteries in vitro, while the effects of PHSML (1 ml/kg) and autophagy agonist rapamycin (Rapa, 10 mg/kg) on the beneficial effect of SGB were investigated. The cellular viability, contractility, and autophagy-related protein expressions in vascular smooth muscle cells (VSMCs) were detected following treatments of PHSML, PHSML obtained from the rats that underwent hemorrhagic shock plus SGB (PHSML-SGB), and PHSML plus 3-MA (5 mM), respectively. Results: Hemorrhagic shock significantly decreased the vascular reactivity to gradient norepinephrine (NE), which is reversed by the SGB treatment and 3-MA administration. On the contrary, PHSML intravenous infusion and Rapa administration inhibited the vascular contractile responses in rats that underwent hemorrhagic shock plus SGB treatment. PHSML treatment significantly inhibited the cellular viability and contractility in VSMCs, increased the expressions of LC3-II and Beclin 1, and decreased the expression of p62, along with opposite appearances in these indices following PHSML-SGB treatment. In addition, 3-MA counteracted the adverse roles of PHSML in these indices in VSMCs. Conclusion: SGB inhibits PHSML-mediated vascular hyporeactivity by reducing the excessive autophagy in VSMCs.

18.
Inflammation ; 44(6): 2543-2553, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34533673

RESUMO

Severe hemorrhagic shock leads to excessive inflammation and immune dysfunction, which results in high mortality related to mesenteric lymph return. A recent study showed that stellate ganglion block (SGB) increased the survival rate in rats suffering hemorrhagic shock. However, whether SGB ameliorates immune dysfunction induced by hemorrhagic shock remains unknown. The aim of the present study was to verify the favorable effects of SGB on the proliferation and function of splenic CD4 + T cells isolated from rats that underwent hemorrhagic shock and to investigate the mechanism related to the SGB interaction with autophagy and posthemorrhagic shock mesenteric lymph (PHSML). Male rats underwent SGB or sham SGB and conscious acute hemorrhage followed by resuscitation and multiple treatments. After 3 h of resuscitation, splenic CD4 + T cells were isolated to measure proliferation and cytokine production following stimulation with ConA in vitro. CD4 + T cells isolated from normal rats were treated with PHSML drained from SBG-treated rats, and proliferation, cytokine production, and autophagy biomarkers were detected. Hemorrhagic shock reduced CD4 + T cell proliferation and production of interleukin (IL)-2, IL-4, and tumor necrosis factor-α-induced protein 8-like 2 (TIPE2). SGB or administration of the autophagy inhibitor 3-methyladenine (3-MA) normalized these indicators. In contrast, administration of rapamycin (RAPA) autophagy agonist or intravenous injection of PHSML inhibited the beneficial effects of SGB on CD4 + T cells from hemorrhagic shocked rats. Furthermore, PHSML incubation decreased proliferation and cytokine production, increased LC3 II/I and Beclin-1 expression, and reduced p-PI3K and p-Akt expression in normal CD4 + T cells. These adverse effects of PHSML were also abolished by 3-MA administration, as well as incubation with PHSML obtained from SGB-treated rats. SGB improves splenic CD4 + T cell function following hemorrhagic shock, which is related to the inhibition of PHSML-mediated autophagy.


Assuntos
Bloqueio Nervoso Autônomo , Autofagia , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Linfa/metabolismo , Ativação Linfocitária , Choque Hemorrágico/terapia , Baço/imunologia , Gânglio Estrelado , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Mesentério , Fenótipo , Ratos Wistar , Choque Hemorrágico/imunologia , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patologia , Baço/metabolismo
19.
J Surg Res ; 266: 245-253, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34034059

RESUMO

BACKGROUND: Myocardial dysfunction is an important adverse factor of hemorrhagic shock that induces refractory hypotension, and post-hemorrhagic shock mesenteric lymph (PHSML) return is involved in this adverse effect. This study investigated whether mesenteric lymph drainage (MLD) improves PHSML return-induced cardiac contractile dysfunction via the restoration of cardiomyocyte calcium sensitivity. MATERIALS AND METHODS: A hemorrhage shock model was established by using a controlled hemorrhage through the femoral artery that maintained a mean arterial pressure of 40 ± 2 mmHg for 3 h. MLD and mesenteric lymph duct ligation (MLDL) were performed from 1 to 3 h during hypotension. The papillary muscles of the heart were collected for measurement of calmodulin expression and for determining contractile responses to either isoprenaline or calcium. RESULTS: The results showed that either MLD or MLDL reversed the hemorrhagic shock-induced downregulation of calmodulin expression, a marker protein of cardiomyocyte calcium sensitization, in papillary muscles. MLD also improved the decreased contractile response and ±df/dt of the papillary muscle strip to gradient isoprenaline or calcium caused by hemorrhagic shock. CONCLUSION: These findings indicate that increased cardiac contractibility may be associated with the restoration of calcium sensitivity produced by PHSML drainage.


Assuntos
Calmodulina/metabolismo , Cardiomiopatias/prevenção & controle , Vasos Linfáticos/cirurgia , Músculos Papilares/fisiologia , Choque Hemorrágico/complicações , Animais , Cardiomiopatias/etiologia , Masculino , Ratos Wistar , Choque Hemorrágico/metabolismo
20.
J Transl Med ; 19(1): 198, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971907

RESUMO

The mortality rate of critically ill patients with acute respiratory distress syndrome (ARDS) is 30.9% to 46.1%. The emergence of the coronavirus disease 2019 (Covid-19) has become a global issue with raising dire concerns. Patients with severe Covid-19 may progress toward ARDS. Mesenchymal stem cells (MSCs) can be derived from bone marrow, umbilical cord, adipose tissue and so on. The easy accessibility and low immunogenicity enable MSCs for allogeneic administration, and thus they were widely used in animal and clinical studies. Accumulating evidence suggests that mesenchymal stem cell infusion can ameliorate ARDS. However, the underlying mechanisms of MSCs need to be discussed. Recent studies showed MSCs can modulate immune/inflammatory cells, attenuate endoplasmic reticulum stress, and inhibit pulmonary fibrosis. The paracrine cytokines and exosomes may account for these beneficial effects. In this review, we summarize the therapeutic mechanisms of MSCs in ARDS, analyzed the most recent animal experiments and Covid-19 clinical trial results, discussed the adverse effects and prospects in the recent studies, and highlight the potential roles of MSC therapy for Covid-19 patients with ARDS.


Assuntos
Tratamento Farmacológico da COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Animais , Humanos , Síndrome do Desconforto Respiratório/terapia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...