Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000320

RESUMO

The toxic metal cadmium (Cd) poses a serious threat to plant growth and human health. Populus euphratica calcium-dependent protein kinase 21 (CPK21) has previously been shown to attenuate Cd toxicity by reducing Cd accumulation, enhancing antioxidant defense and improving water balance in transgenic Arabidopsis. Here, we confirmed a protein-protein interaction between PeCPK21 and Arabidopsis nuclear transcription factor YC3 (AtNF-YC3) by yeast two-hybrid and bimolecular fluorescence complementation assays. AtNF-YC3 was induced by Cd and strongly expressed in PeCPK21-overexpressed plants. Overexpression of AtNF-YC3 in Arabidopsis reduced the Cd inhibition of root length, fresh weight and membrane stability under Cd stress conditions (100 µM, 7 d), suggesting that AtNF-YC3 appears to contribute to the improvement of Cd stress tolerance. AtNF-YC3 improved Cd tolerance by limiting Cd uptake and accumulation, activating antioxidant enzymes and reducing hydrogen peroxide (H2O2) production under Cd stress. We conclude that PeCPK21 interacts with AtNF-YC3 to limit Cd accumulation and enhance the reactive oxygen species (ROS) scavenging system and thereby positively regulate plant adaptation to Cd environments. This study highlights the interaction between PeCPK21 and AtNF-YC3 under Cd stress conditions, which can be utilized to improve Cd tolerance in higher plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cádmio , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Cádmio/toxicidade , Cádmio/metabolismo , Populus/genética , Populus/metabolismo , Populus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estresse Fisiológico/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica
2.
Front Public Health ; 12: 1357073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903575

RESUMO

Background: Persistent HR-HPV causes cervical cancer, exhibiting geographic variance. Europe/Americas have higher HPV16/18 rates, while Asia/Africa predominantly have non-16/18 HR-HPV. This study in Fujian, Asia, explores non-16/18 HR-HPV infections, assessing their epidemiology and cervical lesion association for targeted prevention. Methods: A total of 101,621 women undergoing HPV screening at a hospital in Fujian Province from 2013 to 2019 were included. HPV genotyping was performed. A subset of 11,666 HPV-positive women with available histopathology results were analyzed to characterize HPV genotype distribution across cervical diagnoses. Results: In 101,621 samples, 24.5% tested positive for HPV. Among these samples, 17.3% exhibited single infections, while 7.2% showed evidence of multiple infections. The predominant non-16/18 high-risk HPV types identified were HPV 52, 58, 53, 51, and 81. Single HPV infections accounted for 64.1% of all HPV-positive cases, with 71.4% of these being non-16/18 high-risk HPV infections. Age-related variations were observed in 11,666 HPV-positive patients with pathological results. Cancer patients were older. In the cancer group, HPV52 (21.8%) and HPV58 (18.6%) were the predominant types, followed by HPV33, HPV31, and HPV53. Compared to single HPV16/18 infection, non-16/18 HPV predominated in LSIL. Adjusted odds ratios (OR) for LSIL were elevated: multiple HPV16/18 (OR 2.18), multiple non-16/18 HR-HPV (OR 2.53), and multiple LR-HPV (OR 2.38). Notably, solitary HPV16/18 conferred higher odds for HSIL and cancer. Conclusion: Our large-scale analysis in Fujian Province highlights HPV 52, 58, 53, 51, and 81 as predominant non-16/18 HR-HPV types. Multiple HPV poses increased LSIL risks, while solitary HPV16/18 elevates HSIL and cancer odds. These findings stress tailored cervical cancer prevention, highlighting specific HPV impacts on lesion severity and guiding region-specific strategies for optimal screening in Asia, emphasizing ongoing surveillance in the vaccination era.


Assuntos
Genótipo , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Infecções por Papillomavirus/virologia , Pessoa de Meia-Idade , Adulto , China/epidemiologia , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/prevenção & controle , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Idoso , Detecção Precoce de Câncer , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/isolamento & purificação
3.
Protein Expr Purif ; 221: 106519, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38830441

RESUMO

Sinopotamon Henanense expresses two metal‒induced metallothioneins (MTs), Cd‒induced MT and Cu‒induced MT (ShCuMT). The Cd‒induced MT has been characterized as a Cd‒thiolate MT. However, it is unknown whether ShCuMT is a Cu‒thiolate MT. In the present study, ShCuMT was expressed heterologously in Escherichia coli and purified by Ni‒NTA column and superdex‒75 column. And its metal‒binding feature was evaluated by DTNB reaction, circular dichroism spectroscopy (CD), isothermal microtitration (ITC), electrospray flight mass spectrometry (ESI‒TOF‒MS), and matrix‒assisted laser desorption ionization flight mass spectrometry (MALDI‒TOF‒MS). Bioinformatics analysis demonstrated that ShCuMT possessed the cysteine‒triplet motif of a Cu‒specific MT. Expression and purification of ShCuMT illustrated that SUMO tag used as the production system for ShCuMT resulted in a high production yield. The stability order of ShCuMT binding metal ions were Cu (Ⅰ) > Cd (Ⅱ) > Zn (Ⅱ). The CD spectrum indicated that ShCuMT binding with Cu (I) exhibited a compact thiol metal clusters structure. Besides, there emerged no a visible nickel‒thiol absorption after Ni‒NTA column affinity chromatography. The ITC results implied that Cu‒ShCuMT possessed the optimal thermodynamic conformation and the highest stoichiometric number of Cu (Ⅰ). Overall, the results suggested that SUMO fusion system is a robust and inexpensive approach for ShCuMT expression and Ni‒NTA column had no influence on metal binding of ShCuMT and Cu(Ⅰ) was considered its cognate metal ion, and ShCuMT possessed canonical Cu‒thiolate characteristics. The metal binding feature of ShCuMT reported here contributes to elucidating the structure‒function relationship of ShCuMT in S. Henanense.


Assuntos
Cobre , Metalotioneína , Metalotioneína/genética , Metalotioneína/química , Metalotioneína/metabolismo , Metalotioneína/isolamento & purificação , Animais , Cobre/metabolismo , Cobre/química , Braquiúros/genética , Braquiúros/metabolismo , Braquiúros/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Cádmio/metabolismo , Cádmio/química , Escherichia coli/genética , Escherichia coli/metabolismo , Sequência de Aminoácidos , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/biossíntese
4.
Vaccine ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38937182

RESUMO

OBJECTIVE: The aim of this study is to demonstrate that the freeze-dried human rabies vaccine (Vero cell), administered in a four-dose schedule (2-1-1) to the 10-60 years old population, has immunogenicity that is not inferior to the approved five-dose schedule and similar vaccines with a four-dose schedule, and to evaluate its safety. METHOD: A total of 1800 individuals were enrolled and divided into three groups: four-dose test group, four-dose control group, and five-dose control group. The rabies virus neutralizing antibodies were measured using the Rapid Fluorescent Focus Inhibition Test to assess immunogenicity, and the incidence of adverse events and serious adverse events were statistically analyzed. RESULTS: The seroconversion rates 14 days after the first dose and 14 days after the complete course of vaccination were 100% in all three groups. The antibody GMC of the four-dose test group was higher than that of the five-dose control group, but slightly lower than the four-dose control group. Seven days after the first dose, both four-dose regimen groups showed higher seroconversion rates and antibody GMCs compared to the five-dose regimen group, proving that the immunogenic effect of the four-dose regimen seven days post-first vaccination is superior to the five-dose regimen. The overall incidence of adverse events showed no significant difference between the four-dose test group and the five-dose control group, but was significantly lower in the four-dose test group compared to the four-dose control group. CONCLUSION: The vaccine in the four-dose test group is equivalent in immunogenic effect to the four-dose control group vaccine and superior to the five-dose control group vaccine; the safety of the vaccine in the four-dose test group is equivalent to the five-dose control group vaccine and superior to the four-dose control group vaccine. CLINICALTRIALS: gov number: NCT05549908.

5.
Intervirology ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38934174

RESUMO

INTRODUCTION: This study aimed to investigate the differences between pregnant women with chronic hepatitis B virus (HBV) infection and intrafamilial infection and those without intrafamilial infection. METHODS: HBV DNA was extracted from the sera of 16 pregnant women with chronic hepatitis B (CHB) and their family members for gene sequencing and phylogenetic analyses. A total of 74 pregnant women with CHB were followed up from the second trimester to three months postpartum. Viral markers and other laboratory indicators were compared between pregnant women with CHB with and without intrafamilial infection. RESULTS: The phylogenetic tree showed that HBV lines in the mother-spread pedigree shared a node, whereas there was an unrelated genetic background for HBV lines in individuals without intrafamilial infection. From delivery to three months postpartum, compared with those without intrafamilial infection, pregnant women with intrafamilial infection were related negatively to HBV DNA (ß=-0.43, 95% Confidence Interval [CI]: -0.76 to -0.12, p=0.009), HBeAg (ß=-195.15, 95% CI: -366.35 to -23.96, p=0.027), and hemoglobin changes (ß=-8.09, 95%CI: -15.54 to -0.64, p=0.035) and positively to changes in the levels of alanine aminotransferase (ß=73.9, 95%CI:38.92-108.95, p<0.001) and albumin (ß=2.73, 95% CI:0.23-5.23, p=0.033). CONCLUSION: The mother-spread pedigree spread model differs from that of non-intrafamilial infections. Pregnant women with intra-familial HBV infection have less hepatitis flares and liver damage, but their HBV DNA and HBeAg levels rebound faster after delivery, than those without intra-familial infection by the virus.

6.
Plant Physiol Biochem ; 210: 108600, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593488

RESUMO

Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.


Assuntos
Homeostase , Fosfolipase D , Proteínas de Plantas , Populus , Estresse Salino , Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fosfolipase D/metabolismo , Fosfolipase D/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Populus/metabolismo , Populus/genética , Populus/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino/genética , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Técnicas do Sistema de Duplo-Híbrido
7.
Plant Sci ; 344: 112082, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583807

RESUMO

The expression of R2R3-MYB transcription factor PeRAX2 increased transiently upon CdCl2 exposure (100 µM, 48 h) in leaves and roots of Populus euphratica. We observed that overexpression of PeRAX2 increased Cd2+ concentration in Arabidopsis root cells and Cd2+ amount in whole plant, which was due to the increased Cd2+ influx into root tips. However, the Cd2+ influx facilitated by PeRAX2 overexpression was substantially reduced by LaCl3 (an inhibitor of Ca2+-channels), suggesting that PeRAX2 could promote the Cd2+ entering through PM Ca2+-permeable channels (CaPCs) in the roots. It is noting that the expression of annexin1 (AtANN1), which mediates the influx of divalent cations through the PM calcium channels, was upregulated by Cd2+ in PeRAX2-transgenic Arabidopsis. Bioinformatic analysis revealed that the AtANN1 promoter (AtANN1-pro) contains four cis-elements for MYB binding. The PeRAX2 interaction with AtANN1-pro was validated by LUC reporter assay, EMSA, and Y1H assay. Our data showed that PeRAX2 binds to the AtANN1 promoter region to regulate gene transcription and that AtANN1 mediates the Cd2+ entry through CaPCs in the PM, leading to a Cd2+ enrichment in transgenic plants. The PeRAX2-stimulated Cd2+ enrichment consequently resulted in high H2O2 production in root cells of transgenic plants. The expression of AtSOD and AtPOD and activities of CAT, SOD, POD increased in the transgenic lines under Cd2+ stress. However, the Cd2+-upregulated expression and activity of antioxidative enzymes were less pronounced in the PeRAX2-overexpressed lines, compared to the wildtype and vector controls. As a result, root length and plant growth were more suppressed by Cd2+ in the transgenic lines. Our data suggest that transcriptional regulation of AtANN1 by PeRAX2 can be utilized to improve Cd2+ enrichment and phytoremediation, although the enriched Cd2+ affected antioxidant defense system and plant growth in the model species.


Assuntos
Arabidopsis , Cádmio , Regulação da Expressão Gênica de Plantas , Populus , Regiões Promotoras Genéticas , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Populus/genética , Populus/metabolismo , Cádmio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética
8.
Arch Biochem Biophys ; 754: 109896, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417691

RESUMO

AIMS: The purpose of this study was to explore the role of RAE1 in the invasion and metastasis of gastric cancer (GC) cells. MATERIALS AND METHODS: RAE1 expression in GC cells was determined by reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB). Cell models featuring RAE1 gene silencing and overexpression were constructed by lentiviral transfection; The proliferation, migration, and invasion ability of cells were detected by cell counting, colony formation assay, would healing assay, and transwell invasion and migration test. WB analysis of ERK/MAPK signaling pathway (ERK1/2, p-ERK1/2, c-Myc) and EMT-related molecules (ZEB1, E-cadherin, N-cadherin, and Vimentin). RESULTS: The expression level of RAE1 in GC was notably higher than in adjacent tissues. Elevated RAE1 expression correlated with an unfavorable prognosis for GC patients. Knockdown of RAE1, as compared to the control group, resulted in a significant inhibition of proliferation, migration, and invasion abilities in GC cell lines. Furthermore, RAE1 knockdown led to a substantial decrease in the expression of N-cadherin, vimentin, ZEB1, p-ERK1/2, and c-Myc proteins, coupled with a marked increase in E-cadherin expression. The biological effects of RAE1 in GC cells were effectively reversed by the inhibition of the ERK/MAPK signaling pathway using SCH772984. Additionally, RAE1 knockdown demonstrated a suppressive effect on GC tumor size in vivo. Immunohistochemistry (IHC) results revealed significantly lower expression of Ki-67 in RAE1 knockout mice compared to the control group. CONCLUSIONS: RAE1 promotes GC cell migration and invasion through the ERK/MAPK pathway and is a potential therapeutic target for GC therapy.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Gástricas , Animais , Humanos , Camundongos , Caderinas/genética , Caderinas/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Vimentina/genética , Vimentina/metabolismo
9.
Mol Cell ; 84(7): 1206-1223.e15, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38423014

RESUMO

Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.


Assuntos
Cromatina , Proteínas Nucleares , Animais , Cromatina/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , DNA/genética , Reparo do DNA por Junção de Extremidades , Histonas/genética , Histonas/metabolismo , Pareamento Cromossômico , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismo
10.
Tree Physiol ; 44(3)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38366380

RESUMO

Nitrogen (N) plays an important role in mitigating salt stress in tree species. We investigate the genotypic differences in the uptake of ammonium (NH4+) and nitrate (NO3-) and the importance for salt tolerance in two contrasting poplars, salt-tolerant Populus euphratica Oliv. and salt-sensitive P. simonii × (P. pyramidalis ×Salix matsudana) (P. popularis cv. 35-44, P. popularis). Total N content, growth and photosynthesis were significantly reduced in P. popularis after 7 days of exposure to NaCl (100 mM) supplied with 1 mM NH4+ and 1 mM NO3-, while the salt effects were not pronounced in P. euphratica. The 15NH4+ trace and root flux profiles showed that salt-stressed poplars retained ammonium uptake, which was related to the upregulation of ammonium transporters (AMTs) in roots, as two of the four AMTs tested significantly increased in salt-stressed P. euphratica (i.e., AMT1.2, 2.1) and P. popularis (i.e., AMT1.1, 1.6). It should be noted that P. euphratica differs from salt-sensitive poplar in the maintenance of NO3- under salinity. 15NO3- tracing and root flux profiles showed that P. euphratica maintained nitrate uptake and transport, while the capacity to uptake NO3- was limited in salt-sensitive P. popularis. Salt increased the transcription of nitrate transporters (NRTs), NRT1.1, 1.2, 2.4, 3.1, in P. euphratica, while P. popularis showed a decrease in the transcripts of NRT1.1, 2.4, 3.1 after 7 days of salt stress. Furthermore, salt-stimulated transcription of plasmalemma H+-ATPases (HAs), HA2, HA4 and HA11 contributed to H+-pump activation and NO3- uptake in P. euphratica. However, salt stimulation of HAs was less pronounced in P. popularis, where a decrease in HA2 transcripts was observed in the stressed roots. We conclude that the salinity-decreased transcripts of NRTs and HAs reduced the ability to uptake NO3- in P. popularis, resulting in limited nitrogen supply. In comparison, P. euphratica maintains NH4+ and NO3- supply, mitigating the negative effects of salt stress.


Assuntos
Compostos de Amônio , Populus , Nitratos/metabolismo , Cloreto de Sódio/farmacologia , Populus/metabolismo , Raízes de Plantas/fisiologia , Compostos de Amônio/metabolismo , Proteínas de Membrana Transportadoras , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/farmacologia , Nitrogênio/metabolismo
11.
Drug Metab Rev ; 56(1): 62-79, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38226647

RESUMO

Melatonin, historically recognized for its primary role in regulating circadian rhythms, has expanded its influence particularly due to its wide range of biological activities. It has firmly established itself in cancer research. To highlight its versatility, we delved into how melatonin interacts with key signaling pathways, such as the Wnt/ß-Catenin, PI3K, and NF-κB pathways, which play foundational roles in tumor development and progression. Notably, melatonin can intricately modulate these pathways, potentially affecting various cellular functions such as apoptosis, metastasis, and immunity. Additionally, a comprehensive review of current clinical studies provides a dual perspective. These studies confirm melatonin's potential in cancer management but also underscore its inherent limitations, particularly its limited bioavailability, which often relegates it to a supplementary role in treatments. Despite this limitation, there is an ongoing quest for innovative solutions and current advancements include the development of melatonin derivatives and cutting-edge delivery systems. By synthesizing the past, present, and future, this review provides a detailed overview of melatonin's evolving role in oncology, positioning it as a potential cornerstone in future cancer therapeutics.


Assuntos
Melatonina , Neoplasias , Humanos , Melatonina/uso terapêutico , Melatonina/metabolismo , Transdução de Sinais , Biologia , Neoplasias/tratamento farmacológico
12.
Diabetes ; 73(2): 225-236, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976214

RESUMO

Endothelial cells (EC) play essential roles in retinal vascular homeostasis. This study aimed to characterize retinal EC heterogeneity and functional diversity using single-cell RNA sequencing. Systematic analysis of cellular compositions and cell-cell interaction networks identified a unique EC cluster with high inflammatory gene expression in diabetic retina; sphingolipid metabolism is a prominent aspect correlated with changes in retinal function. Among sphingolipid-related genes, alkaline ceramidase 2 (ACER2) showed the most significant increase. Plasma samples of patients with nonproliferative diabetic retinopathy (NPDR) with diabetic macular edema (DME) or without DME (NDME) and active proliferative DR (PDR) were collected for mass spectrometry analysis. Metabolomic profiling revealed that the ceramide levels were significantly elevated in NPDR-NDME/DME and further increased in active PDR compared with control patients. In vitro analyses showed that ACER2 overexpression retarded endothelial barrier breakdown induced by ceramide, while silencing of ACER2 further disrupted the injury. Moreover, intravitreal injection of the recombinant ACER2 adeno-associated virus rescued diabetes-induced vessel leakiness, inflammatory response, and neurovascular disease in diabetic mouse models. Together, this study revealed a new diabetes-specific retinal EC population and a negative feedback regulation pathway that reduces ceramide content and endothelial dysfunction by upregulating ACER2 expression. These findings provide insights into cell-type targeted interventions for diabetic retinopathy.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Animais , Camundongos , Humanos , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Retina/metabolismo , Ceramidas , Esfingolipídeos
13.
Circulation ; 149(11): 843-859, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38018467

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition, but approved medical therapies to prevent AAA progression and rupture are currently lacking. Sphingolipid metabolism disorders are associated with the occurrence and development of AAA. It has been discovered that ganglioside GM3, a sialic acid-containing type of glycosphingolipid, plays a protective role in atherosclerosis, which is an important risk factor for AAA; however, the potential contribution of GM3 to AAA development has not been investigated. METHODS: We performed a metabolomics study to evaluated GM3 level in plasma of human patients with AAA. We profiled GM3 synthase (ST3GAL5) expression in the mouse model of aneurysm and human AAA tissues through Western blotting and immunofluorescence staining. RNA sequencing, affinity purification and mass spectrometry, proteomic analysis, surface plasmon resonance analysis, and functional studies were used to dissect the molecular mechanism of GM3-regulating ferroptosis. We conditionally deleted and overexpressed St3gal5 in smooth muscle cells (SMCs) in vivo to investigate its role in AAA. RESULTS: We found significantly reduced plasma levels of GM3 in human patients with AAA. GM3 content and ST3GAL5 expression were decreased in abdominal aortic vascular SMCs in patients with AAA and an AAA mouse model. RNA sequencing analysis showed that ST3GAL5 silencing in human aortic SMCs induced ferroptosis. We showed that GM3 interacted directly with the extracellular domain of TFR1 (transferrin receptor 1), a cell membrane protein critical for cellular iron uptake, and disrupted its interaction with holo-transferrin. SMC-specific St3gal5 knockout exacerbated iron accumulation at lesion sites and significantly promoted AAA development in mice, whereas GM3 supplementation suppressed lipid peroxidation, reduced iron deposition in aortic vascular SMCs, and markedly decreased AAA incidence. CONCLUSIONS: Together, these results suggest that GM3 dysregulation promotes ferroptosis of vascular SMCs in AAA. Furthermore, GM3 may constitute a new therapeutic target for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Ferroptose , Humanos , Camundongos , Animais , Gangliosídeo G(M3)/metabolismo , Proteômica , Músculo Liso Vascular/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/metabolismo , Ferro , Miócitos de Músculo Liso/metabolismo , Modelos Animais de Doenças
14.
Int J Biol Macromol ; 250: 126330, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579898

RESUMO

Levan is a high-valued ß-(2,6)-linked fructan with promising physicochemical and physiological properties and has diverse potential applications in the food, nutraceutical, pharmaceutical and cosmetic industry, but its commercial availability is still restricted to the relatively high costs of production. In this study, a strain identified as Microbacterium sp. XL1 was isolated from soil and highly produced exopolysaccharide (EPS). HPLC, FTIR and NMR spectroscopy revealed XL1-EPS is a levan-type fructan connected by ß-(2, 6) linkages. SEM, DLS and TGA-DSC analysis showed that XL1-EPS processed high morphological versatility, narrow size distribution in its solutions and excellent thermal stability. The levan yield reached 83.67 ± 4.06 g/L with corresponding productivity of 3.49 ± 0.17 g/L/h and a conversion yield of 39.8 ± 1.9 % using sucrose (210 g/L) as substrates under the optimal cultivation conditions concluded by the response surface methodology (RSM). More strikingly, the XL1 strain also has multi-type fructanases to generate levanbiose, kestose, DFA IV and other L-FOSs. These results suggest Microbacterium sp. XL1 is a promising strain to produce levan and can provide various levan/inulin-degrading enzymes to create a great diversity of FOSs.

15.
Heliyon ; 9(7): e18220, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37501983

RESUMO

The oxidation resistance of TiC/Ni composites is crucial for its application in high-temperature oxidation environment. The in-situ TiC/Ni composites are fabricated by reactive sintering method, and the influence of TiC particle size on oxidation resistance of composite is studied. The particle size of TiC increases from 1.54 µm to 2.40 µm as the sintering holding time prolongs from 2 h to 6 h, due to the dissolution-reprecipitation mechanism. The oxidation kinetics of in-situ TiC/Ni composite with different TiC particle size oxidized at 800 °C for 100 h obeys parabolic kinetics. The oxidation mass gain of composite increases from 7.471 mg•cm-2 to 8.454 mg•cm-2, and the oxide scale on composites becomes thicker, as the particle size of TiC increases from 1.54 µm to 2.40 µm. The reduction of TiC particle size facilitates the formation of a dense and continuous oxide scale on composite, helpful to restrict the diffusion of O, Ti and Ni atoms during oxidation. Therefore, the reduction of TiC particle size is contributed to the optimization of oxidation resistance of in-situ TiC/Ni composites.

16.
CNS Neurosci Ther ; 29(10): 2775-2786, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37269061

RESUMO

AIMS: Complex cellular communications between glial cells and neurons are critical for brain normal function and disorders, and single-cell level RNA-sequencing datasets display more advantages for analyzing cell communications. Therefore, it is necessary to systematically explore brain cell communications when considering factors such as sex and brain region. METHODS: We extracted a total of 1,039,459 cells derived from 28 brain single-cell RNA-sequencing (scRNA-seq) or single-nucleus RNA-sequencing (snRNA-seq) datasets from the GEO database, including 12 human and 16 mouse datasets. These datasets were further divided into 71 new sub-datasets when considering disease, sex, and region conditions. In the meanwhile, we integrated four methods to evaluate ligand-receptor interaction score among six major brain cell types (microglia, neuron, astrocyte, oligodendrocyte, OPC, and endothelial cell). RESULTS: For Alzheimer's disease (AD), disease-specific ligand-receptor pairs when compared with normal sub-datasets, such as SEMA4A-NRP1, were identified. Furthermore, we explored the sex- and region-specific cell communications and identified that WNT5A-ROR1 among microglia cells displayed close communications in male, and SPP1-ITGAV displayed close communications in the meninges region from microglia to neurons. Furthermore, based on the AD-specific cell communications, we constructed a model for AD early prediction and confirmed the predictive performance using multiple independent datasets. Finally, we developed an online platform for researchers to explore brain condition-specific cell communications. CONCLUSION: This research provided a comprehensive study to explore brain cell communications, which could reveal novel biological mechanisms involved in normal brain function and neurodegenerative diseases such as AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Semaforinas , Masculino , Humanos , Animais , Camundongos , RNA Nuclear Pequeno , Perfilação da Expressão Gênica/métodos , Ligantes , Análise da Expressão Gênica de Célula Única , Doença de Alzheimer/genética , Núcleo Solitário
17.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175914

RESUMO

High NaCl (200 mM) increases the transcription of phospholipase Dδ (PLDδ) in roots and leaves of the salt-resistant woody species Populus euphratica. We isolated a 1138 bp promoter fragment upstream of the translation initiation codon of PePLDδ. A promoter-reporter construct, PePLDδ-pro::GUS, was introduced into Arabidopsis plants (Arabidopsis thaliana) to demonstrate the NaCl-induced PePLDδ promoter activity in root and leaf tissues. Mass spectrometry analysis of DNA pull-down-enriched proteins in P. euphratica revealed that PeGLABRA3, a basic helix-loop-helix transcription factor, was the target transcription factor for binding the promoter region of PePLDδ. The PeGLABRA3 binding to PePLDδ-pro was further verified by virus-induced gene silencing, luciferase reporter assay (LRA), yeast one-hybrid assay, and electrophoretic mobility shift assay (EMSA). In addition, the PeGLABRA3 gene was cloned and overexpressed in Arabidopsis to determine the function of PeGLABRA3 in salt tolerance. PeGLABRA3-overexpressed Arabidopsis lines (OE1 and OE2) had a greater capacity to scavenge reactive oxygen species (ROS) and to extrude Na+ under salinity stress. Furthermore, the EMSA and LRA results confirmed that PeGLABRA3 interacted with the promoter of AtPLDδ in transgenic plants. The upregulated AtPLDδ in PeGLABRA3-transgenic lines resulted in an increase in phosphatidic acid species under no-salt and saline conditions. We conclude that PeGLABRA3 activated AtPLDδ transcription under salt stress by binding to the AtPLDδ promoter region, conferring Na+ and ROS homeostasis control via signaling pathways mediated by PLDδ and phosphatidic acid.


Assuntos
Arabidopsis , Populus , Tolerância ao Sal/genética , Populus/genética , Populus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
J Cell Mol Med ; 27(11): 1465-1476, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078407

RESUMO

There is a growing body of evidence that innate immunity also plays an important role in the progression of hepatitis B virus (HBV) infection. However, there is less study on systematically elucidating the characteristics of innate immunity in HBV-infected pregnant women. We compared the features of peripheral blood mononuclear cells in three healthy pregnant women and three HBV-infected pregnant women by single-cell RNA sequencing. 10 DEGs were detected between groups and monocytes were the main expression source of most of the DEGs, which involved in the inflammatory response, apoptosis and immune regulation. Meanwhile, qPCR and ELISA were performed to verify above genes. Monocytes displayed immune response defect, reflecting poor ability of response to IFN. In addition, eight clusters were identified in monocytes. We identified molecular drivers in monocytes subpopulations.TNFSF10+ monocytes, MT1G+ monocytes and TUBB1+ monocytes were featured with different gene expression pattern and biological function.TNFSF10+ monocytes and MT1G+ monocytes were characterized by high levels of inflammation response.TNFSF10+ monocytes, MT1G+ monocytes and TUBB1+ monocytes showed decreased response to IFN. Our results dissects alterations in monocytes related to the immune response of HBV-infected pregnant women and provides a rich resource for fully understanding immunopathogenesis and developing effective preventing HBV intrauterine infection strategies.


Assuntos
Hepatite B , Complicações Infecciosas na Gravidez , Humanos , Gravidez , Feminino , Vírus da Hepatite B/genética , Monócitos , Gestantes , Leucócitos Mononucleares/metabolismo , Antígenos de Superfície da Hepatite B , Complicações Infecciosas na Gravidez/genética , Hepatite B/genética , Hepatite B/metabolismo , Análise de Sequência de RNA
19.
J Sleep Res ; 32(2): e13736, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36163423

RESUMO

The hypocretin neurons in the lateral hypothalamus are connected not only to brain alertness systems but also to brainstem nuclei that regulate blood pressure and heart rate. The premise is that regulation of blood pressure and heart rate is altered and affected by methylphenidate, a stimulant drug in children with narcolepsy with cataplexy. The changes in 24-hr ambulatory systolic and diastolic blood pressure and heart rate were compared among pre-treated narcolepsy with cataplexy patients (40 males, 10 females), with mean age 10.4 ± 3.5 years (M ±â€…SD, range 5-17 years) with values from 100 archival age-sex-body mass index matched controls. Patients had a lower diurnal systolic blood pressure (-6.5 mmHg; p = 0.000) but higher heart rate (+11.0 bpm; p = 0.000), particularly evident in the waketime, while diastolic blood pressure was comparable. With methylphenidate (18 mg sustained release at 08:00 hours), patients with narcolepsy with cataplexy had higher systolic blood pressure (+4.6 mmHg, p = 0.015), diastolic blood pressure (+3.3 mmHg, p = 0.005) and heart rate (+7.1 bpm, p = 0.028) during wake time, but nighttime cardiovascular values were unchanged from pre-treated values; amplitude variation in cardiovascular values was unchanged over 24 hr. In conclusion, children with narcolepsy with cataplexy had downregulation blood pressure profile but a higher heart rate, and lesser non-dipping profiles. Daytime methylphenidate treatment increases only waketime blood pressure and further elevated heart rate values.


Assuntos
Cataplexia , Metilfenidato , Narcolepsia , Neuropeptídeos , Masculino , Feminino , Humanos , Criança , Pré-Escolar , Adolescente , Cataplexia/tratamento farmacológico , Frequência Cardíaca/fisiologia , Pressão Sanguínea/fisiologia , Narcolepsia/tratamento farmacológico , Metilfenidato/farmacologia , Metilfenidato/uso terapêutico
20.
Redox Rep ; 27(1): 270-278, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36357965

RESUMO

Objectives: Caffeine has been shown to reduce the incidence of bronchopulmonary dysplasia (BPD). To investigate the protective mechanism of caffeine in a hyperoxia-based cell model of BPD in vitro.Methods: Type II alveolar epithelial cells (AECs II) were isolated and randomly divided into 6 groups: the normal, hyperoxia, caffeine (50 µM caffeine), antagonist (5 µM ZM241385), agonist (5 µM CGS21680), and DMSO groups. Transfection with siRNA against adenosine A2A receptor (siA2AR) was performed in AECs II.Results: Caffeine alone or in combination with adenosine A2A receptor (A2AR) antagonist inhibited apoptosis, promoted proliferation and reduced oxidative stress (OS). The cyclic adenosine monophosphate (cAMP), protein kinase A (PKA) mRNA, A2AR mRNA and the protein levels of A2AR, phospho-Src, phospho-ERK1/2, phospho-P38 and cleaved caspase-3 were decreased in the caffeine and antagonist groups compared with that in the hyperoxia group. However, the effects of caffeine above were weakened by the A2AR agonist. Knockdown of A2AR showed similar results to caffeine.Discussion: Caffeine can reduce apoptosis, promote proliferation, and alleviate OS in hyperoxia-induced AECs II injury by inhibiting the A2AR/cAMP/PKA/Src/ERK1/2/p38MAPK signaling pathway. Caffeine and A2AR may serve as a promising therapeutic target for BPD in prematurity.


Assuntos
Hiperóxia , Lesão Pulmonar , Recém-Nascido , Humanos , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Cafeína/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Sistema de Sinalização das MAP Quinases , Hiperóxia/complicações , Hiperóxia/tratamento farmacológico , Transdução de Sinais , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Estresse Oxidativo , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...