Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ACS Chem Biol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814157

RESUMO

Currently, the CRISPR-Cas9 system serves as a prevalent tool for genome editing and gene expression regulation. Its therapeutic application is limited by off-target effects that can affect genomic integrity through nonspecific, undesirable changes in the genome. Various strategies have been explored to mitigate the off-target effects. Many approaches focus on modifying components of the system, namely, Cas9 and guide RNAs, to enhance specificity. However, a common challenge is that methods aiming to increase specificity often result in a significant reduction in the editing efficiency. Here, we introduce a novel approach to modifying crRNA to balance CRISPR-Cas9 specificity and efficiency. Our approach involves incorporating nucleoside modifications, such as replacing ribo- to deoxyribonucleosides and backbone modifications, using phosphoryl guanidine groups, specifically 1,3-dimethylimidazolidin-2-ylidene phosphoramidate. In this case, within the first 10 nucleotides from the 5' crRNA end, phosphodiester bonds are substituted with phosphoryl guanidine groups. We demonstrate that crRNAs containing a combination of deoxyribonucleosides and single or multiple phosphoryl guanidine groups facilitate the modulation of CRISPR-Cas9 system activity while improving its specificity in vitro.

2.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257365

RESUMO

Numerous types of oligonucleotide modifications have been developed since automated synthesis of DNA/RNA became a common instrument in the creation of synthetic oligonucleotides. Despite the growing number of types of oligonucleotide modifications under development, only a few of them and, moreover, their combinations have been studied widely enough in terms of their influence on the properties of corresponding NA constructions. In the present study, a number of oligonucleotides with combinations of 3'-end lipophilic (a single cholesteryl or a pair of dodecyl residues) and phosphate backbone modifications were synthesized. The influence of the combination of used lipophilic groups with phosphate modifications of various natures and different positions on the efficiency of cell penetration was evaluated. The obtained results indicate that even a couple of phosphate modifications are able to affect a set of oligonucleotide properties in a complex manner and can remarkably change cellular uptake. These data clearly show that the strategy of using different patterns of modification combinations has great potential for the rational design of oligonucleotide structures with desired predefined properties.


Assuntos
Oligonucleotídeos , Fosfatos , Transporte Biológico , RNA
3.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834092

RESUMO

Lipophilic oligonucleotide conjugates represent a powerful tool for nucleic acid cellular delivery, and many methods for their synthesis have been developed over the past few decades. In the present study, a number of chemical approaches for the synthesis of different fork- and comb-like dodecyl-containing oligonucleotide structures were performed, including use of non-nucleotide units and different types of phosphate modifications such as alkyl phosphoramidate, phosphoryl guanidine, and triazinyl phosphoramidate. The influence of the number of introduced lipophilic residues, their mutual arrangement, and the type of formed modification backbone on cell penetration was evaluated. The results obtained indicate great potential in the developed chemical approaches, not only for the synthesis of complex oligonucleotide structures but also for the fine-tuning of their properties.


Assuntos
Guanidinas , Oligonucleotídeos , Oligonucleotídeos/química , Guanidina/química , Fosfatos
4.
Biochemistry (Mosc) ; 88(8): 1165-1180, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37758315

RESUMO

Serum albumin is currently in the focus of biomedical research as a promising platform for the creation of multicomponent self-assembling systems due to the presence of several sites with high binding affinity of various compounds in its molecule, including lipophilic oligonucleotide conjugates. In this work, we investigated the stoichiometry of the dodecyl-containing oligonucleotides binding to bovine and human serum albumins using an electrophoretic mobility shift assay. The results indicate the formation of the albumin-oligonucleotide complexes with a stoichiometry of about 1 : (1.25 ± 0.25) under physiological-like conditions. Using atomic force microscopy, it was found that the interaction of human serum albumin with the duplex of complementary dodecyl-containing oligonucleotides resulted in the formation of circular associates with a diameter of 165.5 ± 94.3 nm and 28.9 ± 16.9 nm in height, and interaction with polydeoxyadenylic acid and dodecyl-containing oligothymidylate resulted in formation of supramolecular associates with the size of about 315.4 ± 70.9 and 188.3 ± 43.7 nm, respectively. The obtained data allow considering the dodecyl-containing oligonucleotides and albumin as potential components of the designed self-assembling systems for solving problems of molecular biology, biomedicine, and development of unique theranostics with targeted action.


Assuntos
Oligonucleotídeos , Albumina Sérica , Animais , Bovinos , Humanos , Oligonucleotídeos/química , Albumina Sérica/metabolismo , Microscopia de Força Atômica , Ensaio de Desvio de Mobilidade Eletroforética
5.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203235

RESUMO

Apurinic/apyrimidinic (AP) sites are abundant DNA lesions generated both by spontaneous base loss and as intermediates of base excision DNA repair. In human cells, they are normally repaired by an essential AP endonuclease, APE1, encoded by the APEX1 gene. Other enzymes can cleave AP sites by either hydrolysis or ß-elimination in vitro, but it is not clear whether they provide the second line of defense in living cells. Here, we studied AP site repairs in APEX1 knockout derivatives of HEK293FT cells using a reporter system based on transcriptional mutagenesis in the enhanced green fluorescent protein gene. Despite an apparent lack of AP site-processing activity in vitro, the cells efficiently repaired the tetrahydrofuran AP site analog resistant to ß-elimination. This ability persisted even when the second AP endonuclease homolog, APE2, was also knocked out. Moreover, APEX1 null cells were able to repair uracil, a DNA lesion that is removed via the formation of an AP site. If AP site hydrolysis was chemically blocked, the uracil repair required the presence of NTHL1, an enzyme that catalyzes ß-elimination. Our results suggest that human cells possess at least two back-up AP site repair pathways, one of which is NTHL1-dependent.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , Humanos , Dano ao DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endonucleases , Reparo por Excisão , Uracila
6.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362137

RESUMO

Azide-alkyne cycloaddition ("click chemistry") has found wide use in the analysis of molecular interactions in living cells. 5-ethynyl-2-(hydroxymethyl)tetrahydrofuran-3-ol (EAP) is a recently developed apurinic/apyrimidinic (AP) site analog functionalized with an ethynyl moiety, which can be introduced into cells in DNA constructs to perform labeling or cross-linking in situ. However, as a non-natural nucleoside, EAP could be subject to removal by DNA repair and misreading by DNA polymerases. Here, we investigate the interaction of this clickable AP site analog with DNA polymerases and base excision repair enzymes. Similarly to the natural AP site, EAP was non-instructive and followed the "A-rule", directing residual but easily detectable incorporation of dAMP by E. coli DNA polymerase I Klenow fragment, bacteriophage RB69 DNA polymerase and human DNA polymerase ß. On the contrary, EAP was blocking for DNA polymerases κ and λ. EAP was an excellent substrate for the major human AP endonuclease APEX1 and E. coli AP exonucleases Xth and Nfo but was resistant to the AP lyase activity of DNA glycosylases. Overall, our data indicate that EAP, once within a cell, would represent a replication block and would be removed through an AP endonuclease-initiated long-patch base excision repair pathway.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Escherichia coli , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Escherichia coli/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Reparo do DNA , Dano ao DNA , DNA Polimerase I/genética , Endonucleases/metabolismo
7.
Molecules ; 28(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36615517

RESUMO

The use of cancer chemotherapy sensitizers is a promising approach to induce the effect of clinically used anticancer treatments. One of the interesting targets is Tyrosyl-DNA Phosphodiesterase 1 (Tdp1), a DNA-repair enzyme, that may prevent the action of clinical Topoisomerase 1 (Top1) inhibitors, such as topotecan (Tpc). Tdp1 eliminates covalent Top1-DNA (Top1c) complexes that appear under the action of topotecan and determines the cytotoxic effect of this drug. We hypothesize that Tdp1 inhibition would sensitize cells towards the effect of Tpc. Herein, we report the synthesis and study of lipophilic derivatives of purine nucleosides that efficiently suppress Tdp1 activity, with IC50 values in the 0.3-22.0 µM range. We also showed that this compound class can enhance DNA damage induced by topotecan in vitro by Comet assay on human cell lines HeLa and potentiate the antitumor effect of topotecan in vivo on a mice ascitic Krebs-2 carcinoma model. Thereby, this type of compound may be useful to develop drugs, that sensitize the effect of topotecan and reduce the required dose and, as a result, side effects.


Assuntos
Diester Fosfórico Hidrolases , Topotecan , Animais , Camundongos , Humanos , Topotecan/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Nucleosídeos de Purina , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/farmacologia , Esterases/metabolismo , Dano ao DNA , DNA , DNA Topoisomerases Tipo I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...