Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(5)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37754159

RESUMO

The structure, phase composition, corrosion and mechanical properties, as well as aspects of biocompatibility in vitro and in vivo, of a Zn-1%Mg-0.1%Dy alloy after equal-channel angular pressing (ECAP) were studied. The structure refinement after ECAP leads to the formation of elongated α-Zn grains with a width of ~10 µm and of Mg- and Dy-containing phases. In addition, X-ray diffraction analysis demonstrated that ECAP resulted in the formation of the basal texture in the alloy. These changes in the microstructure and texture lead to an increase in ultimate tensile strength up to 262 ± 7 MPa and ductility up to 5.7 ± 0.2%. ECAP slows down the degradation process, apparently due to the formation of a more homogeneous microstructure. It was found that the alloy degradation rate in vivo after subcutaneous implantation in mice is significantly lower than in vitro ones. ECAP does not impair biocompatibility in vitro and in vivo of the Zn-1%Mg-0.1%Dy alloy. No signs of suppuration, allergic reactions, the formation of visible seals or skin ulcerations were observed after implantation of the alloy. This may indicate the absence of an acute reaction of the animal body to the Zn-1%Mg-0.1%Dy alloy in both states.

2.
Materials (Basel) ; 15(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36556879

RESUMO

The effect of high-pressure torsion (HPT) on the microstructure, phase composition, mechanical characteristics, degradation rate, and bioactive properties of the Zn-1%Mg alloy is studied. An ultrafine-grained (UFG) structure with an average grain size of α-Zn equal to 890 ± 26 nm and grains and subgrains of the Mg2Zn11 and MgZn2 phases with a size of 50-100 nm are formed after HPT. This UFG structure leads to an increase in the ultimate tensile strength of the alloy by ~3 times with an increase in elongation to 6.3 ± 3.3% due to the formation of a basal texture. The study of corrosion resistance did not show a significant effect of HPT on the degradation rate of the alloy. In addition, no significant changes in the bioactivity of the alloy after HPT: hemolysis, cellular colonization and Escherichia coli growth inhibition.

3.
Materials (Basel) ; 14(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34947355

RESUMO

Observations of the surface domain structure (Kerr-effect), optical metallography, scanning electron microscopy (SEM-SE), and electron microprobe analysis (EPMA-SEM), measurements of major and minor magnetic hysteretic loops were used to study pseudo-single-crystal samples of (Sm,Zr)(Co,Cu,Fe)z alloys subjected to heat treatments to the high-coercivity state, which are used in fabricating sintered permanent magnets. Correlations between the chemical composition, hysteretic properties, structural components, domain structure, and phase state were determined for the concentration ranges that ensure wide variations of 4f-/4d-/3d-element ratio in the studied samples. The phase state formed by collinear and coherent phase components determines the high coercive force and ultimate magnetic hysteresis loops of the pseudo-single crystals. It was found that the 1:5 phase with the hexagonal structure (P6/mmm) is the matrix of the alloys for (Sm,Zr)(Co,Cu,Fe)z permanent magnets; the matrix undergoes phase transformations in the course of all heat treatments for the high-coercivity state. The heterogeneity observed with optical magnifications, namely, the observation of main structural components A and B, is due to the alternation, within the common matrix, of regions with modulated quasi-spherical precipitates and regions with hexagonal bipyramids (cellular phase) although, traditionally, many investigators consider the cellular phase as the matrix. It is shown that the relationship of volume fractions of structural components A and B that account for more than 0.9 volume fraction of the total, which is due to the integral chemical composition of the alloys, determines the main hysteretic performances of the samples. The Zr-rich phases, such as 5:19, 2:7, and 6:23, and a structural component with the variable stoichiometry (Sm(Co,Cu,Fe)3.5-5) that is almost free of Zr and contains up to 33 at% Cu, were found only within structural component A in quantities sufficient for EPMA analysis.

4.
Materials (Basel) ; 13(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650445

RESUMO

The wide application of Nd-Fe-B permanent magnets, in addition to rare-earth metal resource constraints, creates the necessity of the development of efficient technologies for recycling sintered Nd-Fe-B permanent magnets. In the present study, a magnet-to-magnet recycling process is considered. As starting materials, magnets of different grades were used, which were processed by hydrogen decrepitation and blending the powder with NdHx. Composition inhomogeneity in the Nd2Fe14B-based magnetic phase grains in the recycled magnets and the existence of a core-shell structure consisting of a Nd-rich (Dy-depleted) core and Nd-depleted (Dy-enriched) shell are demonstrated. The formation of this structure results from the grain boundary diffusion process of Dy that occurs during the sintering of magnets prepared from a mixture of Dy-free (N42) and Dy-containing magnets. The increase in the coercive force of the N42 magnet was shown to be 52%. The simultaneous retention of the remanence, and even its increase, were observed and explained by the improved isolation of the main magnetic phase grains as well as their alignment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...