Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38854102

RESUMO

Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with electrophysiological and optical imaging tools during sleep-wake cycles. We found that the activity of major glutamatergic cell populations in the DG is organized into in-fraslow oscillations (0.01 - 0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep. Further experiments revealed that the infraslow oscillation in the DG is modulated by rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by 5-HT1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

2.
iScience ; 25(11): 105488, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36405774

RESUMO

Absence seizures, manifested by spike-wave discharges (SWD) in the electroencephalogram, display synchronous reciprocal excitation between the neocortex and thalamus. Recent studies have revealed that inhibitory neurons in the reticular thalamic (RT) nucleus and excitatory thalamocortical (TC) neurons are two subcortical players in generating SWD. However, the signals that drive SWD-related activity remain elusive. Here, we show that SWD predominately occurs during wakefulness in several mouse models of absence epilepsy. In more focused studies of Gnb1 mutant mice, we found that sensory input regulates SWD. Using in vivo recording, we demonstrate that TC cells are activated prior to the onset of SWD and then inhibited during SWD. On the contrary, RT cells are slightly inhibited prior to SWD, but are strongly activated during SWD. Furthermore, chemogenetic activation of TC cells leads to the enhancement of SWD. Together, our results indicate that sensory input can regulate SWD by activating the thalamocortical pathway.

3.
Nat Commun ; 13(1): 4748, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961989

RESUMO

Understanding the neural mechanisms underlying sleep state transitions is a fundamental goal of neurobiology and important for the development of new treatments for insomnia and other sleep disorders. Yet, brain circuits controlling this process remain poorly understood. Here we identify a population of sleep-active glutamatergic neurons in the ventrolateral medulla (VLM) that project to the preoptic area (POA), a prominent sleep-promoting region, in mice. Microendoscopic calcium imaging demonstrate that these VLM glutamatergic neurons display increased activity during the transitions from wakefulness to Non-Rapid Eye Movement (NREM) sleep. Chemogenetic silencing of POA-projecting VLM neurons suppresses NREM sleep, whereas chemogenetic activation of these neurons promotes NREM sleep. Moreover, we show that optogenetic activation of VLM glutamatergic neurons or their projections in the POA initiates NREM sleep in awake mice. Together, our findings uncover an excitatory brainstem-hypothalamic circuit that controls the wake-sleep transitions.


Assuntos
Área Pré-Óptica , Vigília , Animais , Bulbo , Camundongos , Neurônios/fisiologia , Área Pré-Óptica/fisiologia , Sono/fisiologia , Vigília/fisiologia
4.
Blood ; 128(3): 415-26, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27268086

RESUMO

Neutrophils are the key effectors for generating innate immunity in response to pathogenic infection and tissue injury in vertebrates. Dysregulation of neutrophil development and function is known to associate with various human disorders. Yet, the genetic network that orchestrates lineage commitment, differentiation, and maturation of neutrophils remains incompletely defined. Here, we present an in vivo study to delineate the genetic program underlying neutrophil development during zebrafish embryonic myelopoiesis. We show that loss of c-Myb function has no effect on macrophages but severely impairs neutrophil terminal differentiation, resulting in the accumulation of neutrophils with unsegmented nuclei and scant granule. This neutrophilic defect, which resembles the neutrophil-specific granule deficiency (SGD) caused by the mutations in CCAAT/enhancer-binding protein ε (C/EBPε) in humans, is attributed, at least in part, to the downregulation of the granule protein transcription. Likewise, genetic inactivation of Cebp1, the zebrafish functional homolog of mammalian C/EBPε, also leads to a similar SGD-like phenotype in zebrafish. Genetic epistasis and biochemical analysis further reveals that c-Myb and Cebp1 act in parallel and cooperatively to control neutrophil differentiation by directly regulating granule protein gene transcription. Our study indicates that c-MYB is an intrinsic master regulator for neutrophil terminal differentiation and a potential target in SGD patients.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/fisiologia , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Estimuladoras de Ligação a CCAAT/genética , Neutrófilos/citologia , Proteínas Proto-Oncogênicas c-myb/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
5.
Development ; 140(19): 3977-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24046317

RESUMO

Recent studies have shown that nascent hematopoietic stem cells (HSCs) derive directly from the ventral aortic endothelium (VAE) via endothelial to hematopoietic transition (EHT). However, whether EHT initiates from a random or predetermined subpopulation of VAE, as well as the molecular mechanism underlying this process, remain unclear. We previously reported that different zebrafish stem cell leukemia (scl) isoforms are differentially required for HSC formation in the ventral wall of the dorsal aorta. However, the exact stage at which these isoforms impact HSC development was not defined. Here, using in vivo time-lapse imaging of scl isoform-specific reporter transgenic zebrafish lines, we show that prior to EHT scl-ß is selectively expressed in hemogenic endothelial cells, a unique subset of VAE cells possessing hemogenic potential, whereas scl-α is expressed later in nascent HSCs as they egress from VAE cells. In accordance with their expression, loss-of-function studies coupled with in vivo imaging analysis reveal that scl-ß acts earlier to specify hemogenic endothelium, which is later transformed by runx1 into HSCs. Our results also reveal a previously unexpected role of scl-α in maintaining newly born HSCs in the aorta-gonads-mesonephros. Thus, our data suggest that a defined hemogenic endothelial population preset by scl-ß supports the deterministic emergence of HSCs, and unravel the cellular mechanisms by which scl isoforms regulate HSC development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Feminino , Hibridização In Situ , Masculino , Microscopia Confocal , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
Blood ; 119(22): 5239-49, 2012 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-22493295

RESUMO

Proper cell fate choice in myelopoiesis is essential for generating correct numbers of distinct myeloid subsets manifesting a wide spectrum of subset-specific activities during development and adulthood. Studies have suggested that myeloid fate choice is primarily regulated by transcription factors; however, new intrinsic regulators and their underlying mechanisms remain to be elucidated. Zebrafish embryonic myelopoiesis gives rise to neutrophils and macrophages and represents a promising system to derive new regulatory mechanisms for myeloid fate decision in vertebrates. Here we present an in vivo study of cell fate specification during zebrafish embryonic myelopoiesis through characterization of the embryos with altered Pu.1, Runx1 activity alone, or their combinations. Genetic analysis shows that low and high Pu.1 activities determine embryonic neutrophilic granulocyte and macrophage fate, respectively. Inactivation and overexpression of Runx1 in zebrafish uncover Runx1 as a key embryonic myeloid fate determinant that favors neutrophil over macrophage fate. Runx1 is induced by high Pu.1 level and in turn transrepresses pu.1 expression, thus constituting a negative feedback loop that fashions a favorable Pu.1 level required for balanced fate commitment to neutrophils versus macrophages. Our findings define a Pu.1-Runx1 regulatory loop that governs the equilibrium between distinct myeloid fates by assuring an appropriate Pu.1 dosage.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mielopoese/fisiologia , Proteínas Proto-Oncogênicas/biossíntese , Transativadores/biossíntese , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/embriologia , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Macrófagos/citologia , Macrófagos/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
7.
Development ; 136(4): 647-54, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19168679

RESUMO

One unique feature of vertebrate definitive hematopoiesis is the ontogenic switching of hematopoietic stem cells from one anatomical compartment or niche to another. In mice, hematopoietic stem cells are believed to originate in the aorta-gonad-mesonephros (AGM), subsequently migrate to the fetal liver (FL) and finally colonize the bone marrow (BM). Yet, the differentiation potential of hematopoietic stem cells within early niches such as the AGM and FL remains incompletely defined. Here, we present in vivo analysis to delineate the differentiation potential of definitive hematopoietic stem/progenitor cells (HSPCs) in the zebrafish AGM and FL analogies, namely the ventral wall of dorsal aorta (VDA) and the posterior blood island (PBI), respectively. Cell fate mapping and analysis of zebrafish runx1(w84x) and vlad tepes (vlt(m651)) mutants revealed that HSPCs in the PBI gave rise to both erythroid and myeloid lineages. However, we surprisingly found that HSPCs in the VDA were not quiescent but were uniquely adapted to generate myeloid but not erythroid lineage cells. We further showed that such distinct differentiation output of HSPCs was, at least in part, ascribed to the different micro-environments present in these two niches. Our results highlight the importance of niche in shaping the differentiation output of developing HSPCs.


Assuntos
Estruturas Animais/citologia , Estruturas Animais/embriologia , Aorta/citologia , Aorta/embriologia , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Peixe-Zebra/embriologia , Animais , Linhagem da Célula , Movimento Celular , Embrião não Mamífero/citologia , Eritrócitos/citologia , Células Eritroides/citologia , Eritropoese , Fertilização , Células Mieloides/citologia
8.
PLoS Biol ; 5(5): e132, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17472439

RESUMO

The stem-cell leukemia (SCL, also known as TAL1) gene encodes a basic helix-loop-helix transcription factor that is essential for the initiation of primitive and definitive hematopoiesis, erythrocyte and megakarocyte differentiation, angiogenesis, and astrocyte development. Here we report that the zebrafish produces, through an alternative promoter site, a novel truncated scl (tal1) isoform, scl-beta, which manifests a temporal and spatial expression distinct from the previously described full-length scl-alpha. Functional analysis reveals that while scl-alpha and -beta are redundant for the initiation of primitive hematopoiesis, these two isoforms exert distinct functions in the regulation of primitive erythroid differentiation and definitive hematopoietic stem cell specification. We further demonstrate that differences in the protein expression levels of scl-alpha and -beta, by regulating their protein stability, are likely to give rise to their distinct functions. Our findings suggest that hematopoietic cells at different levels of hierarchy are likely governed by a gradient of the Scl protein established through temporal and spatial patterns of expression of the different isoforms.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Expressão Gênica , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Northern Blotting , Diferenciação Celular/fisiologia , Clonagem Molecular , Primers do DNA , Células-Tronco Hematopoéticas/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Dados de Sequência Molecular , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
9.
Blood ; 110(1): 99-106, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17369489

RESUMO

Hematopoiesis is a complex process which gives rise to all blood lineages in the course of an organism's lifespan. However, the underlying molecular mechanism governing this process is not fully understood. Here we report the isolation and detailed study of a newly identified zebrafish ugly duckling (Udu) mutant allele, Udu(sq1). We show that loss-of-function mutation in the udu gene disrupts primitive erythroid cell proliferation and differentiation in a cell-autonomous manner, resulting in red blood cell (RBC) hypoplasia. Positional cloning reveals that the Udu gene encodes a novel factor that contains 2 paired amphipathic alpha-helix-like (PAH-L) repeats and a putative SANT-L (SW13, ADA2, N-Cor, and TFIIIB-like) domain. We further show that the Udu protein is predominantly localized in the nucleus and deletion of the putative SANT-L domain abolishes its function. Our study indicates that the Udu protein is very likely to function as a transcription modulator essential for the proliferation and differentiation of erythroid lineage.


Assuntos
Células Precursoras Eritroides/citologia , Fatores de Ligação de DNA Eritroide Específicos/fisiologia , Eritropoese , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Eritrócitos Anormais/patologia , Células Eritroides/citologia , Fatores de Ligação de DNA Eritroide Específicos/genética , Mutação , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
10.
Dev Dyn ; 233(3): 1163-72, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15937927

RESUMO

Zebrafish is an excellent model organism for studying vertebrate development and human disease. With the availability of increased numbers of zebrafish mutants and microarray chips, gene expression profiling has become a powerful tool for identification of downstream target genes perturbed by a specific mutation. One of the obstacles often encountered, however, is to isolate large numbers of zebrafish mutant embryos that are indistinguishable in morphology from the wild-type siblings for microarray analysis. Here, we report a method using amplified cDNA derived from five embryos for gene expression profiling of the 18-somite zebrafish cloche (clo) mutant, in which development of hematopoietic and endothelial lineages is severely impaired. In total, 31 differentially expressed target genes are identified, of which 13 have not been reported previously. We further determine that of these 13 new targets, 8 genes, including coproporphyrinogen oxidase (cpo), carbonic anhydrase (cahz), claudin g (cldn g), zinc-finger-like gene 2 (znfl2), neutrophil cytosol factor 1 (ncf1), matrix metalloproteinase 13 (mmp13), dual specificity phosphatase 5 (dusp5), and a novel gene referred as zebrafish vessel-specific gene 1 (zvsg1) are predominantly expressed in hematopoietic and endothelial cells. Comparative analysis demonstrates that this method is comparable and complementary to that of the conventional approach using unamplified sample. Our study provides valuable information for studying hematopoiesis and vessel formation. The method described here offers a powerful tool for gene expression profiling of zebrafish mutants in general.


Assuntos
DNA Complementar/genética , Mutação/genética , Técnicas de Amplificação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Regulação para Baixo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Homozigoto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Somitos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...