Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Surg Oncol ; 19(1): 121, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33865414

RESUMO

BACKGROUND: It has been reported that long-chain non-coding RNA (lncRNA) zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) is an oncogene in various cancers, including hepatocellular carcinoma (HCC). We investigated the role and mechanism of ZEB1-AS1 as a competitive endogenous RNA (ceRNA) combined with miR-23c in HCC cell proliferation and invasion. METHODS: QRT-PCR was used to detect ZEB1-AS1 and miR-23c expressions in HCC tissues and cells. The dual luciferase reporter assay detected the targeted regulation of miR-23c and ZEB1-AS1. We also performed the correlation analysis of their expression in HCC tissues by the Spearman's correlation analysis. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the proliferation of hepatoma cells. Cell invasion was assessed by the Transwell assay. RESULTS: QRT-PCR results indicated ZEB1-AS1 was upregulated and miR-23c was downregulated in HCC tissues and cell lines. ZEB1-AS1 knockdown hampered the proliferation and invasion of HCC cells. Dual luciferase reporter assay showed that miR-23c is a target of ZEB1-AS1, and ZEB1-AS1 was significantly negatively correlated with the miR-23c expression in HCC tissues. The results of MTT and Transwell assay showed that miR-23c inhibition restored the inhibitory effect of ZEB1-AS1 knockdown on HCC cells proliferation and invasion. CONCLUSIONS: As a ceRNA, lncRNA ZEB1-AS1 may play a vital role in inhibiting HCC progression through miR-23c, which will provide new clues and theoretical basis for the HCC diagnosis and treatment.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , RNA Longo não Codificante/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Apoptose/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Prognóstico
2.
Cancer Manag Res ; 13: 1245-1255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603470

RESUMO

PURPOSE: Peroxiredoxin-6 (PRDX6) is frequently found in various cancers. However, its expression and relevance to proliferation, invasion, and migration in human non-small-cell lung cancer (NSCLC) remain unclear. This study investigated the role and novel mechanism of PRDX6 in progression in an NSCLC cell line (A549). METHODS: We analyzed the expression of PRDX6 in NSCLC and adjacent normal tissues and explored the proliferation, migration, and invasion of A549 cells using either a PRDX6 plasmid or PRDX6 small interfering RNA (siRNA). We also assessed the effects of PRDX6 on the epithelial-mesenchymal transition (EMT) and ß-catenin-mediated transcription of target genes. RESULTS: PRDX6 expression was markedly higher in NSCLC tissues than in adjacent tissues. Proliferation, invasion, and migration of A549 cells were promoted by overexpression of PRDX6 but inhibited by its silencing. PRDX6 overexpression inhibited the protein expression of both phosphorylated ß-catenin and E-cadherin, as well as the expression of vimentin, TWIST, and downstream targets of ß-catenin including c-MYC, TCF-4, and MMP14. Conversely, PRDX6 silencing markedly decreased the expression of c-MYC, TCF-4, and MMP14, and inhibited EMT in A549 cells. Overexpression of PRDX6 in vivo notably increased the volume and weight of tumors. CONCLUSION: PRDX6 overexpression promotes the proliferation, invasion, and migration of A549 cells in vitro and in vivo.

4.
Neurochem Res ; 45(5): 1120-1129, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32124161

RESUMO

Recent studies have shown that the level of miR-1202 in peripheral blood is closely related to brain activity and cognitive function in patients with depression, and it is involved in glioma pathological progress. However, the correlation between miR-1202 and neuroinflammation has not been reported. The expressions of miR-1202 and small GTP-ase Rab1a at mRNA level were detected in oxygen-glucose deprivation (OGD)/reoxygenation (R) induced human microglial cells (HM cells) by RT-qPCR at different time points within 48 h. Dual luciferase report assay and immunofluorescence staining were performed to confirm whether Rab1a was the potential target of miR-1202. The toll-like receptor 4 (TLR4)/nuclear factor kappa beta (NF-κB) signal related proteins (TLR4, P65, p-P65, IκBa) and the downstream pro-inflammation factors pro-IL-1ß, pro-IL-18, as well as the inflammation factors interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) were detected by western-blotting. The expression level of TLR4 on cell surface was detected by flow cytometry. Down-regulation of miR-1202 and up-regulation of Rab1a were found in OGD/R induced HM cells. In addition, miR-1202 was identified to directly target Rab1a and down-regulate its expression. Moreover, over-expression of miR-1202 suppressed the activation of TLR4/NF-κB inflammatory signaling pathway. Rab1a can increase the expression level of TLR4 on the surface of OGD/R induced HM cells. MiR-1202 exerts neuroprotective effect by negatively regulating its target protein Rab1a, which can inactivate TLR4/NF-κB-involved inflammatory signaling pathway in OGD/R induced HM cells. These findings provide potential therapeutic targets for ischemic stroke.


Assuntos
Hipóxia Celular/fisiologia , Glucose/deficiência , MicroRNAs/biossíntese , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas rab1 de Ligação ao GTP/biossíntese , Linhagem Celular , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Microglia/metabolismo , NF-kappa B/antagonistas & inibidores , Fármacos Neuroprotetores/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/antagonistas & inibidores , Proteínas rab1 de Ligação ao GTP/antagonistas & inibidores
6.
J Biomed Biotechnol ; 2012: 732017, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23093857

RESUMO

Gene expression is closely related to optimal vector-host system pairing in many prokaryotes. Redesign of the human cystatin C (cysC) gene using the preferred codons of the prokaryotic system may significantly increase cysC expression in Escherichia coli (E. coli). Specifically, cysC expression may be increased by removing unstable sequences and optimizing GC content. According to E. coli expression system codon preferences, the gene sequence was optimized while the amino acid sequence was maintained. The codon-optimized cysC (co-cysC) and wild-type cysC (wt-cysC) were expressed by cloning the genes into a pET-30a plasmid, thus transforming the recombinant plasmid into E. coli BL21. Before and after the optimization process, the prokaryotic expression vector and host bacteria were examined for protein expression and biological activation of CysC. The recombinant proteins in the lysate of the transformed bacteria were purified using Ni(2+)-NTA resin. Recombinant protein expression increased from 10% to 46% based on total protein expression after codon optimization. Recombinant CysC purity was above 95%. The significant increase in cysC expression in E. coli expression produced by codon optimization techniques may be applicable to commercial production systems.


Assuntos
Códon/genética , Cistatina C/biossíntese , Cistatina C/genética , Escherichia coli/fisiologia , Melhoramento Genético/métodos , Engenharia de Proteínas/métodos , Proteínas Recombinantes/metabolismo , Humanos , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...