Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(26): e202402669, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38637296

RESUMO

Singlet oxygen (1O2) is an essential reactive species responsible for selective oxidation of organic matter, especially in Fenton-like processes. However, due to the great limitations in synthesizing catalysts with well-defined active sites, the controllable production and practical application of 1O2 remain challenging. Herein, guided by theoretical simulations, a series of boron nitride-based single-atom catalysts (BvBN/M, M=Co, Fe, Cu, Ni and Mn) were synthesized to regulate 1O2 generation by activating peroxymonosulfate (PMS). All the fabricated BvBN/M catalysts with explicit M-N3 sites promoted the self-decomposition of the two PMS molecules to generate 1O2 with high selectivity, where BvBN/Co possessed moderate adsorption energy and d-band center exhibited superior catalytic activity. As an outcome, the BvBN/Co-PMS system coupled with membrane filtration technology could continuously transform aromatic alcohols to aldehydes with nearly 100 % selectivity and conversion rate under mild conditions, suggesting the potential of this novel catalytic system for green organic synthesis.

2.
Chemosphere ; 354: 141737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499078

RESUMO

Extracting heavy metal ions from wastewater has significant implications for both environmental remediation and resource preservation. However, the conventional adsorbents still suffer from incomplete ion removal and low utilization efficiency of the recovered metals. Herein, we present an extraction and reutilization method assisted by porous boron nitride (p-BN) containing high-density N atoms for metal recovery with simultaneous catalyst formation. The p-BN exhibits stable and efficient metal adsorption performance, particularly for ultra-trace-level water purification. The distribution coefficients towards Pb2+, Cd2+, Co2+ and Fe3+ can exceed 106 mL g-1 and the residual concentrations that reduced from 1 mg L-1 to 0.8-1.3 µg L-1 are much lower than the acceptable limits in drinking water standards of World Health Organization. Meanwhile, the used p-BN after Co ion adsorption can be directly adopted as a high-efficiency catalyst for activating peroxymonosulfate (PMS) in organic pollutant degradation without additional post-treatment, avoiding the secondary metal pollution and the problems of neglected manpower and energy consumption. Moreover, a flow-through multistage utilization system assisted by p-BN/polyvinylidene fluoride (PVDF) membrane is constructed for achieving both metal ion separation and reutilization in the removal of organic pollutants, providing a new avenue for sustainable wastewater remediation.


Assuntos
Compostos de Boro , Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Águas Residuárias , Porosidade , Poluentes Químicos da Água/análise , Metais Pesados/análise , Adsorção , Íons
3.
Chemosphere ; 313: 137394, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36442675

RESUMO

Iron-based layered double hydroxides (LDHs) have drawn tremendous attention as a promising peroxymonosulfate (PMS) activators, but they still suffer from low efficiencies limited by electrostatic agglomeration and low electronic conductivity. Herein, a MgFeAl layered double hydroxide/carbonitride (LDH/CN) heterostructure was constructed via triggering the interlayer reaction of citric acid (CA) and urea. CA as a structure-directing agent regulated the interlayer anion of MgFeAl-LDH, which enabled an interfacial tuning in the process of coupling with CN. The obtained LDH/CN heterostructure, as an efficient PMS activator, achieved nearly 100% bisphenol A (BPA) removal rate in 10 min with high specific activity (0.146 L min-1·m-2). Electron paramagnetic resonance (EPR) tests, quenching experiments, electrochemical characterization and X-ray photoelectrons spectroscopy (XPS) tests were applied to clarify the mechanism of BPA degradation. The results unraveled that the activity of the catalyst originated from the heterostructure of LDH and CN with an efficient interfacial electron transfer, which promoted the fast generation of O2•- for rapid pollutant degradation. In addition, the catalyst exhibited excellent applicability in realistic wastewater. This work offered a rational strategy for forming a heterostructure catalyst with a fine interface engineering in actual environmental cleanup.


Assuntos
Ácido Cítrico , Hidróxidos , Condutividade Elétrica , Peróxidos
4.
J Environ Manage ; 311: 114859, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35276558

RESUMO

Developing highly efficient and stable catalysts for peroxymonosulfate (PMS) based advanced oxidation processes (AOPs) are crucial in the field of environmental remediation. In this work, a facile encapsulated-precursor pyrolysis strategy was reported to prepare a competent PMS-activation catalyst, in which uniformly distributed Fe3O4 nanoparticles were firmly anchored on porous boron nitride (BN) nanosheets by N-doped carbon shell (NC layer). Taking advantage of strong metal-support interaction, the as-synthesized catalyst (BFA-500) could efficiently activate PMS to achieve 100% removal of 4-chlorophenol (4-CP) in 6 min, and the corresponding turnover frequency (TOF) value was 1-2 orders of magnitude higher than that of the benchmark homogeneous (Fe2+) and nanoparticle (Fe0 and Fe3O4) catalysts. Moreover, the well protected encapsulated structure of BFA-500 ensured the remarkable stability that could effectively resist the interference of complex water environment, including initial pH value, various inorganic ions and actual water, and its catalytic activity remained almost unchanged in 5 use-regeneration cycles. More importantly, the generation of O2•- and 1O2 radicals for the 4-CP removal in BFA-500/PMS system was ascribed to Fe3O4 boosted C-N sites containing pyridinic N, where electrons transferred from the embedded Fe3O4 nanoparticles to C-N sites to secure the PMS dissociation into reactive radicals. Overall, this work provided a promising way to design desired PMS-activation catalyst toward wastewater purification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...