Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 98(3): 907-923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489180

RESUMO

Background: The hippocampus consists of histologically and functionally distinct subfields, which shows differential vulnerabilities to Alzheimer's disease (AD)-associated pathological changes. Objective: To investigate the atrophy patterns of the main hippocampal subfields in patients with mild cognitive impairment (MCI) and AD and the relationships among the hippocampal subfield volumes, plasma biomarkers and cognitive performance. Methods: This cross-sectional study included 119 patients stratified into three categories: normal cognition (CN; N = 40), MCI (N = 39), and AD (N = 40). AD-related plasma biomarkers were measured, including amyloid-ß (Aß)42, Aß40, Aß42/Aß40 ratio, p-tau181, and p-tau217, and the hippocampal subfield volumes were calculated using automated segmentation and volumetric procedures implemented in FreeSurfer. Results: The subiculum body, cornu ammonis (CA) 1-head, CA1-body, CA4-body, molecular_layer_HP-head, molecular_layer_HP-body, and GC-ML-DG-body volumes were smaller in the MCI group than in the CN group. The subiculum body and CA1-body volumes accurately distinguished MCI from CN (area under the curve [AUC] = 0.647-0.657). The subiculum-body, GC-ML-DG-body, CA4-body, and molecular_layer_HP-body volumes accurately distinguished AD from MCI (AUC = 0.822-0.833) and AD from CN (AUC = 0.903-0.905). The p-tau 217 level served as the best plasma indicator of AD and correlated with broader hippocampal subfield volumes. Moreover, mediation analysis demonstrated that the subiculum-body volume mediated the associations between the p-tau217 and p-tau181 levels, and the Montreal Cognitive Assessment and Auditory Verbal Learning Test recognition scores. Conclusions: Hippocampal subfields with distinctive atrophy patterns may mediate the effects of tau pathology on cognitive function. The subiculum-body may be the most clinically meaningful hippocampal subfield, which could be an effective target region for assessing disease progression.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Estudos Transversais , Imageamento por Ressonância Magnética , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Atrofia/patologia , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...