Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 8: 100772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840807

RESUMO

The aroma types of cream cheese affect its commercial value and consumer acceptability. However, the types of volatile substances and sensory characteristics of cream cheese at different fermentation stages are still unclear. Therefore, in this study, headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) were used to analyze the volatile substances in cream cheese fermentation. Orthogonal partial least squares discriminant analysis (OPLS-DA), odor activity value (OAV), relative odor activity value (ROAV) and variable projection importance (VIP) were used to identify the characteristic flavor substances in cream cheese fermentation. Finally, the relationship between key flavor substances and sensory characteristics was determined by partial least squares (PLS) analysis. A total of 34 and 36 volatile organic compounds were identified by HS-SPME-GC-MS and HS-GC-MS, respectively, and 14 characteristic flavor substances were found, based on VIP, ROAV and OAV models. Combined with sensory analysis and flavor substance changes, it was found that the cream cheese fermented for 15 d had the best flavor and taste. This study reveals the characteristics and contribution of volatile substances in cream cheese at different fermentation stages, which provides new insights into improving flavor and quality control.

2.
ACS Appl Mater Interfaces ; 16(20): 25676-25685, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38742765

RESUMO

Single-molecule detection with high accuracy and specialty plays an important role in biomedical diagnosis and screening. Zero-mode waveguides (ZMWs) enable the possibility of single biological molecule detection in real time. Nevertheless, the absence of a reliable assessment for single effective complex loading has constrained further applications of ZMWs in complex interaction. Both the quantity and activity of the complex loaded into ZMWs have a critical effect on the efficiency of detection. Herein, a fluorescence evaluation at quenching and accumulation checkpoints was established to assess and optimize single effective complex loading into ZMWs. A primer-template-enzyme ternary complex was designed, and then an evaluation for quantity statistics at the quenching checkpoint and functional activity at the accumulation checkpoint was used to validate the effectiveness of complexes loaded into ZMWs. By optimizing the parameters such as loading time, procedures, and enzyme amount, the single-molecule effective occupancy was increased to 25.48%, achieving 68.86% of the theoretical maximum value (37%) according to Poisson statistics. It is of great significance to provide effective complex-loading validation for improving the sample-loading efficiency of single-molecule assays or sequencing in the future.


Assuntos
Espectrometria de Fluorescência , Fluorescência
3.
Molecules ; 29(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257241

RESUMO

Microbial community succession in raw milk determines its quality and storage period. In this study, carbon dioxide (CO2) at 2000 ppm was used to treat raw milk to investigate the mechanism of extending the shelf life of raw milk by CO2 treatment from the viewpoint of microbial colonies and metabolites. The results showed that the shelf life of CO2-treated raw milk was extended to 16 days at 4 °C, while that of the control raw milk was only 6 days. Microbiomics analysis identified 221 amplicon sequence variants (ASVs) in raw milk, and the alpha diversity of microbial communities increased (p < 0.05) with the extension of storage time. Among them, Pseudomonas, Actinobacteria and Serratia were the major microbial genera responsible for the deterioration of raw milk, with a percentage of 85.7%. A combined metagenomics and metabolomics analysis revealed that microorganisms altered the levels of metabolites, such as pyruvic acid, glutamic acid, 5'-cmp, arginine, 2-propenoic acid and phenylalanine, in the raw milk through metabolic activities, such as ABC transporters, pyrimidine metabolism, arginine and proline metabolism and phenylalanine metabolism, and reduced the shelf life of raw milk. CO2 treatment prolonged the shelf life of raw milk by inhibiting the growth of Gram-negative aerobic bacteria, such as Acinetobacter guillouiae, Pseudomonas fluorescens, Serratia liquefaciens and Pseudomonas simiae.


Assuntos
Dióxido de Carbono , Leite , Animais , Metabolômica , Arginina , Fenilalanina
4.
BME Front ; 4: 0027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849675

RESUMO

Objective and Impact Statement: We describe an electroenzymatic mediator (EM) sensor based on an electroenzymatic assembly peak separation strategy, which can efficiently realize the simultaneous detection of 3 typical cardiovascular disease (CVD) metabolites in 5 µl of plasma under one test. This work has substantial implications toward improving the efficiency of chronic CVD assessment. Introduction: Monitoring CVD of metabolites is strongly associated with disease risk. Independent and time-consuming detection in hospitals is unfavorable for chronic CVD management. Methods: The EM was flexibly designed by the cross-linking of electron mediators and enzymes, and 3 EM layers with different characteristics were assembled on one electrode. Electrons were transferred under tunable potential; 3 metabolites were quantitatively detected by 3 peak currents that correlated with metabolite concentrations. Results: In this study, the EM sensor showed high sensitivity for the simultaneous detection of 3 metabolites with a lower limit of 0.01 mM. The linear correlation between the sensor and clinical was greater than 0.980 for 242 patients, and the consistency of risk assessment was 94.6%. Conclusion: Metabolites could be expanded by the EM, and the sensor could be a promising candidate as a home healthcare tool for CVD risk assessment.

5.
Food Chem ; 423: 136299, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178602

RESUMO

Lipolysis and flavor development during fermentation of sour cream were studied by evaluating the physicochemical changes, sensory differences and volatile components. The fermentation caused significant changes in pH, viable count and sensory evaluation. The peroxide value (POV) decreased after reaching the maximum value of 1.07 meq/kg at 15 h, while thiobarbituric acid reactive substances (TBARS) increased continuously with the accumulation of secondary oxidation products. The Free fatty acids (FFAs) in sour cream were mainly myristic, palmitic and stearic. GC-IMS was used to identify the flavor properties. A total of 31 volatile compounds were identified, among which the contents of characteristic aromatic substances such as ethyl acetate, 1-octen-3-one and hexanoic acid were increased. The results suggest that lipid changes and flavor formation in sour cream are influenced by fermentation time. Furthermore, flavor compounds may be related to lipolysis such as 1-octen-3-one and 2- heptanol were also observed.


Assuntos
Lipólise , Compostos Orgânicos Voláteis , Cetonas , Alimentos , Fermentação
6.
Meat Sci ; 202: 109202, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37150068

RESUMO

Low molecular weight iron (LMW-Fe)-mediated oxidative stress from heme degradation may reduce beef water-holding capacity (WHC). However, the underlying mechanism of heme degradation is still unknown. In the present study, we assessed the WHC, tissue morphology, reactive oxygen species (ROS), apoptosis, heme oxygenase(HMOX) 1 expression, and ferroptosis characteristics of beef chilled at 4 °C for 6 days. Results showed that water loss increased and WHC decreased during beef storage (P < 0.05). Increased protein and mRNA expression of HMOX1 promoted the decomposition of heme and facilitated the liberation of iron ions (P < 0.05), and excess LMW-Fe was associated with ROS formation, depletion of glutathione, and inhibition of glutathione peroxidase 4 activity (P < 0.05). Muscle tissue showed typical features of ferroptosis, including expression of ferroptosis-related genes, malondialdehyde accumulation, and structural damage to mitochondria (P < 0.05). It was also found that HMOX1 and the heme pathway-mediated ferroptosis were associated with structural changes in myofibrils and reduced WHC in chilled beef.


Assuntos
Ferroptose , Heme Oxigenase-1 , Animais , Bovinos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Espécies Reativas de Oxigênio , Refrigeração , Água , Estresse Oxidativo , Ferro , Heme/metabolismo
7.
Curr Res Food Sci ; 6: 100445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36699115

RESUMO

Maillard reaction products (MRPs) with roasted/broth flavors were prepared and analyzed for the resulting flavor differences. The identification of volatile compounds in MRPs was carried out by GC-MS and GC × GC-ToF-MS. A total of 88 compounds were identified by GC-MS; 130 compounds were identified by GC × GC-ToF-MS, especially acids and ketones were identified. Principal component analysis (PCA) was used to visualize the volatile compounds, and the roasted/broth flavors were differentiated. The contents and types of pyrazines were more in roasted flavors; thiol sulfides and thiophenes were more in broth flavors. All in all, the differences in volatile compounds producing roasted/broth flavors were studied through the cysteine-xylose-glutamate Maillard reaction system, which provided a theoretical basis for the future use of Maillard reaction to simulate meat flavor.

8.
Food Chem ; 398: 133903, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998485

RESUMO

To investigate the potential mechanisms by which cold storage affects the water-holding capacity (WHC) of beef through analysis of exudates using an untargeted metabolomics strategy. A total of 877 metabolites were detected in four groups of beef exudates that have been frozen for 1, 2, 4, and 6 days, of which, 278 were identified as differential metabolites (DMs). The metabolic pathways of the DMs analysed by KEGG pathway enrichment included ABC transporters, purine metabolism, biosynthesis of cofactors, protein digestion and absorption, and ferroptosis. Ferroptosis was identified during storage of beef, and the reduction in WHC of beef was accompanied by a ferroptosis process. In addition, six DMs were identified in the KEGG pathway of ferroptosis, and the process of cellular ferroptosis was dependent on the inhibition of glutathione metabolic processes. Overall, the ferroptosis of cells during beef storage had a negative impact on WHC, and the finding of ferroptosis complemented the post-slaughter apoptosis.


Assuntos
Ferroptose , Água , Animais , Bovinos , Congelamento , Glutationa , Metabolômica , Água/análise
9.
Front Nutr ; 10: 1285653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192649

RESUMO

With the growing production of raw milk, interest has been increasing in its quality control. CO2, as a cold processing additive, has been studied to extend the cold storage period and improve the quality of raw milk. However, it is yet uncertain how representative microbial species and biomarkers can succeed one another at distinct critical periods during refrigeration. Therefore, the effects of CO2 treatment on the succession footprint of the microbial community and changes in quality during the period of raw milk chilling were examined by 16S rRNA analysis combined with electronic nose, and electronic tongue techniques. The results indicated that, the refrigeration time was shown to be prolonged by CO2 in a concentration-dependent way. And CO2 treatment was linked to substantial variations in beta and alpha diversity as well as the relative abundances of various microbial taxa (p < 0.01). The dominant bacterial phylum Proteobacteria was replaced with Firmicutes, while the major bacterial genera Acinetobacter and Pseudomonas were replaced with lactic acid bacteria (LAB), including Leuconostoc, Lactococcus, and Lactobacillus. From the perspective of biomarkers enriched in CO2-treated sample, almost all of them belong to LAB, no introduction of harmful toxins has been found. The assessment of the quality of raw milk revealed that CO2 improved the quality of raw milk by lowering the acidity and the rate of protein and fat breakdown, and improved the flavor by reducing the generation of volatiles, and increasing umami, richness, milk flavor and sweetness, but reducing sourness. These findings offer a new theoretical foundation for the industrial use of CO2 in raw milk.

10.
Foods ; 11(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36429323

RESUMO

Goji berry (Lycium barbarum L., LBL) is a good source of carotenoids, while the bioaccessibility of various types of LBL carotenoids has not been explored. In the study, eight carotenoids, three carotenoid esters and two carotenoid glycosylated derivatives were identified by a non−targeted metabolomics approach. The dried LBL (DRI), LBL in water (WAT), and LBL in "Baijiu" (WIN) were used to recreate the three regularly chosen types of utilization, and the in vitro digestion model showed that the bioaccessibility of the carotenoids increased significantly from the oral to the gastric and intestinal phase (p < 0.05). The bioaccessibility of LBL carotenoids was the most elevated for DRI (at 28.2%), followed by WIN and WAT (at 24.9% and 20.3%, respectively). Among the three carotenoids, zeaxanthin dipalmitate showed the highest bioaccessibility (51.8−57.1%), followed by ß−carotene (51.1−55.6%) and zeaxanthin (45.2−56.3%). However, the zeaxanthin from DRI exhibited significantly higher bioaccessibility (up to 58.3%) than WAT and WIN in both the gastric and intestinal phases (p < 0.05). Results of antioxidant activity tests based on DPPH, FRAP, and ABTS showed that the addition of lipids improved the bioaccessibility of the carotenoids. (p < 0.05).

11.
Food Chem Toxicol ; 165: 113115, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35537647

RESUMO

Our study aimed to understand the effects of Maillard reaction products (MRPs) intake on intestinal health, in vitro digestion, and fermentation metabolites in Sprague-Dawley (SD) rats. MRPs promoted the digestion of pepsin, but was not conducive to the subsequent in vitro digestion of trypsin. MRPs ingestion increased the propionate in intestine, but it could not change the branched-chain fatty acids (BCFAs) and short-chain fatty acids (SCFAs). However, MRPs ingestion led to an increase in the Lactobacillus abundance in gut. In the high-dose groups, the abundance of genes in partial amino acid and monosaccharide metabolism increased, while in lipid metabolism decreased compared with the middle dose groups. Therefore, the absorption of MRPs was lowered than that of protein and carbohydrates. Through functional predictive analysis, our study could reveal the effects of long-term intake of MRPs on intestinal health in SD rats.


Assuntos
Linho , Produtos Finais de Glicação Avançada , Aminoácidos/química , Animais , Produtos Finais de Glicação Avançada/metabolismo , Reação de Maillard , Ratos , Ratos Sprague-Dawley
12.
Food Chem X ; 14: 100304, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35469311

RESUMO

Haem is considered to be a potential producer of meat oxidation and the effect of its mediated oxidation on the water holding capacity (WHC) of beef is not yet clear. This work investigated the interrelationships between haem, protein and lipid oxidation, and WHC in beef during refrigerated storage. The increase in juice loss during storage (p < 0.05) indicates a reduction in WHC. Haem was oxidised, resulting in its structural disruption and an increase in the proportion of random coil in the protein secondary structures (p < 0.05). Extractable haem iron content was decreased and non-haem iron content was increased (p < 0.05), indicating the degradation of haem and the release of iron during storage. The levels of lipid and protein oxidation products significantly increased throughout the storage time (p < 0.05). Furthermore, Spearman analysis verified significant correlations between these changes. In conclusion, these processes are mutually reinforcing and may exacerbate muscle juice loss.

13.
Microsyst Nanoeng ; 8: 23, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251688

RESUMO

Circulating tumor cells (CTCs) have tremendous potential to indicate disease progression and monitor therapeutic response using minimally invasive approaches. Considering the limitations of affinity strategies based on their cost, effectiveness, and simplicity, size-based enrichment methods that involve low-cost, label-free, and relatively simple protocols have been further promoted. Nevertheless, the key challenges of these methods are clogging issues and cell aggregation, which reduce the recovery rates and purity. Inspired by the natural phenomenon that the airflow around a windmill is disturbed, in this study, a windmill-like hole array on the SU-8 membrane was designed to perturb the fluid such that cells in a fluid would be able to self-mix and that the pressure acting on cells or the membrane would be dispersed to allow a greater velocity. In addition, based on the advantages of fluid coatings, a lipid coating was used to modify the membrane surface to prevent cell aggregation and clogging of the holes. Under the optimal conditions, recovery rates of 93% and 90% were found for A549 and HeLa cells in a clinical simulation test of our platform with a CTC concentration of 20-100 cells per milliliter of blood. The white blood cell (WBC) depletion rate was 98.7% (n = 15), and the CTC detection limit was less than 10 cells per milliliter of blood (n = 6). Moreover, compared with conventional membrane filtration, the advantages of the proposed device for the rapid (2 mL/min) and efficient enrichment of CTCs without clogging were shown both experimentally and theoretically. Due to its advantages in the efficient, rapid, uniform, and clog-free enrichment of CTCs, our platform offers great potential for metastatic detection and therapy analyses.

14.
Food Chem X ; 13: 100224, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35146413

RESUMO

Flaxseed derived Maillard reaction products (MRPs) have typical meaty flavor, but there is no report on comparison of their amino acids and peptides reactivity. The peptides and amino acids of flaxseed protein hydrolysates were separately collected by G-15 gel chromatography. Taste dilution analysis (TDA) showed that peptides-MRPs had high umami, mouthfulness, and continuity enhancement. Further, LC-MS/MS revealed that flaxseed protein hydrolysates consumed 41 peptides after Maillard reaction. Particularly, DLSFIP (Asp-Leu-Ser-Phe-Ile-Pro) and ELPGSP (Glu-Leu-Pro-Gly-Ser-Pro) accounted for 42.22% and 20.41% of total consumption, respectively. Aroma extract dilution analysis (AEDA) indicated that formation of sulfur-containing flavors was dependent on cysteine, while peptides were more reactive than amino acids for nitrogen-containing heterocycles. On the other hand, 11 flavor compounds with flavor dilution (FD) ≥ 64 were identified for flaxseed derived MRPs, such as 2-methylthiophene, 2-methyl-3-furanthiol, furfural, 2-furfurylthiol, 3-thiophenethiol, thieno[3,2-b] thiophene, 2,5-thiophenedicarboxaldehyde, 2-methylthieno[2,3-b] thiophene, 1-(2-methyl-3-furylthio)-ethanethiol, 2-methylthieno[3,2-b] thiophene, and bis(2-methyl-3-furyl)-disulfide. In addition, we further demonstrated the flavors formation mechanism of flaxseed derived MRPs.

15.
Biosens Bioelectron ; 198: 113856, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34871836

RESUMO

Anticoagulation therapy with heparin is an effective treatment against thrombosis. Heparin tends to cause spontaneous bleeding and requires regular monitoring during therapy. Most high-sensitivity heparin sensors have focused on the concentration detection in clarified buffer solution. However, the pharmacodynamics of heparin vary depending on individual patient or disease, while potency detection with high sensitivity and dynamic range outperforms concentration detection in clinical diagnosis. In this study, a novel heparinase-linked differential time (HLDT) method was established with a two-zone of Graphene modified Carbon (GR-C) sensor, which was utilized to evaluate heparin potency in whole blood. It was based on electrochemical measurement of clotting time shifting associated with presence or absence of heparinase. Heparinase inhibits the anticoagulant ability of heparin by forming a heparin-antithrombin-thrombin complex during coagulation. And the intensity and peak time of electrochemical current were associated with thrombin activity and clotting on the electrode. The results demonstrated that the sensor had high selectivity for heparin potency in 10 µL of whole blood with a detection limit of 0.1 U/mL, and the linear detection range was 0.1-5 U/mL. The coefficient of variation (CV) of the peak time was less than 5%, and linear correlation between the GR-C sensor and the TEG-5000 instrument was 0.987. Thus, the HLDT method has better clinical application due to its good repeatability, high sensitivity and wide range in heparin potency evaluation.


Assuntos
Técnicas Biossensoriais , Heparina , Anticoagulantes/farmacologia , Coagulação Sanguínea , Testes de Coagulação Sanguínea , Heparina Liase , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...