Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Stem Cells ; 15(4): 395-404, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35220281

RESUMO

Background and Objectives: Chronic obstructive pulmonary disease (COPD) is a common, frequently-occurring disease and poses a major health concern. Unfortunately, there is current no effective treatment for COPD, particularly emphysema. Recently, experimental treatment of COPD using mesenchymal stem cells (MSCs) mainly focused on bone marrow-derived MSCs (BM-MSCs). Human umbilical cord-derived MSCs (hUC-MSCs) have more advantages compared to BM-MSCs. However, studies on the role of hUC-MSCs in management of COPD are limited. This study sought to explore the role of hUC-MSCs and its action mechanisms in a rat model of VEGF receptor blocker SU5416-injured emphysema. Methods and Results: hUC-MSCs were characterized by immunophenotype and differentiation analysis. Rats were divided into four groups: Control, Control+MSC, SU5416 and SU5416+MSC. Rats in model group were administered with SU5416 for three weeks. At the end of the second week after SU5416 administration, model group were infused with 3×106 hUC-MSCs through tail vein. After 14 days from hUC-MSCs transplantation, rats were euthanized and data were analyzed. HE staining and mean linear intercepts showed that SU5416-treated rats exhibited typical emphysema while emphysematous changes in model rats after hUC-MSCs transplantation disappeared completely and were restored to normal phenotype. Furthermore, hUC-MSCs inhibited apoptosis as shown by TUNEL and Western blotting. ELISA and Western blotting showed hUC-MSCs rescued VEGF-VEGFR2-AKT pathway in emphysematous lungs. Conclusions: The findings show that hUC-MSCs effectively repair the emphysema injury. This study provides the first evidence that hUC-MSCs inhibit apoptosis via rescuing VEGF- VEGFR2-AKT pathway in a rat model of emphysema.

2.
J Control Release ; 340: 259-270, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34740724

RESUMO

As most of intracellular reactive oxygen species (ROS) is produced in the mitochondria, mitochondrial modulation of cancer cell is a promising strategy for maximizing the in situ-activable combination therapy of oxidative catastrophe and cascaded chemotherapy. Herein, a serum-stable polymer­calcium phosphate (CaP) hybrid nanocapsule carrying siRNA against ADP-ribosylation factor 6 (Arf6) overexpressed in cancer cells and parent drug camptothecin (CPT), designated as PTkCPT/siRNA, was developed for the RNAi-induced oxidative catastrophe and cascaded chemotherapy. A copolymer of mPEG-P(Asp-co-TkCPT), covalently tethered with chemotherapeutic CPT via a ROS-labile dithioketal (Tk) linker, was synthesized and self-assembled into a PTkCPT micelle as a nanotemplate for the CaP mineralization. The as-prepared PTkCPT/siRNA nanoparticle showed a core-shell-distinct nanocapsule which was consisted of a spherical polymeric core enclosed within a CaP shell capable of releasing siRNA in response to lysosomal acidity. Blocking Arf6 signal pathway of cancer cells led to their mitochondrial aggregation and subsequently induced a burst of ROS for oxidative catastrophe, which further triggered the cascaded CPT chemotherapy via the breakage of ROS-labile dithioketal linker. This strategy of RNAi-induced oxidative catastrophe and cascaded chemotherapy resulted in a significant combination effect on cancer cell killing and tumor growth inhibition in mice with low side effects, and provided a promising paradigm for precise cancer therapy.


Assuntos
Nanocápsulas , Nanopartículas , Pró-Fármacos , Fator 6 de Ribosilação do ADP , Animais , Fosfatos de Cálcio , Linhagem Celular Tumoral , Camundongos , Estresse Oxidativo , Polímeros , Interferência de RNA
3.
Biomater Sci ; 9(15): 5218-5226, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34169939

RESUMO

Combination therapy provides significantly better outcomes than a single drug treatment and becomes an efficient strategy for cancer therapy at present. Owing to the advantages of improved drug bioavailability, decreased side effects, and drug codelivery properties, polymeric carrier-based nanodrugs show great application potential in combination therapy. In this study, a pH-responsive block polymer consisting of polyethylene glycol (mPEG) and poly(asparagyl diisopropylethylenediamine-co-phenylalanine) (P(Asp(DIP)-co-Phe)) is synthesized for drug delivery. The polymer self-assembles into nanovesicles and simultaneously encapsulates the hydrophilic hypoxia-activated prodrug tirapazamine (TPZ) and the hydrophobic photosensitizer dihydrogen porphin (chlorin e6, Ce6). The formed nanodrug can be triggered by near infrared irradiation to induce photodynamic therapy (PDT), resulting in a hypoxic tumor environment to activate the prodrug TPZ to achieve efficient chemotherapy. The cascade synergistic therapeutic effect is evaluated both in vitro and in vivo in a breast cancer mice model. This study reveals a potential strategy for efficient cancer therapy by using Ce6 and TPZ co-encapsulated nanovesicles.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Animais , Linhagem Celular Tumoral , Hipóxia , Camundongos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes , Tirapazamina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...