Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Biol Macromol ; 224: 797-809, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283555

RESUMO

Recently, it was newly revealed that the DNA damage induced by cis­platinum (Cis-Pt) mediated chemotherapy was significantly impaired by the highly expressed programmed death ligand-1 (PD-L1) in tumor cells. Besides, the efficacy of Cis-Pt was also limited due to its severe side effects, especially enhanced drug efflux induced by multidrug resistance protein 1 (MDR-1) and increased tumor metastasis. Up to now, few drugs or carbohydrates could simultaneously solve these defects of Cis-Pt mediated chemotherapy. Here, we newly found that metformin-modified chitosan (Ch-Met) possessed ideal selective mitochondria accumulation capacity, leading to the further disrupted mitochondrial function, which then effectively inhibited the upregulated PD-L1 expression to inhibit DNA damage repair in tumor cells, as well as impaired drug efflux and lowered tumor metastasis. Therefore, it was demonstrated that Ch-Met could sensitize the chemotherapy efficacy of Cis-Pt.


Assuntos
Antineoplásicos , Quitosana , Metformina , Neoplasias , Humanos , Cisplatino/farmacologia , Antígeno B7-H1/metabolismo , Metformina/farmacologia , Adjuvantes Imunológicos/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos
3.
Acta Pharm Sin B ; 12(11): 4204-4223, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36386474

RESUMO

As a promising modality for cancer therapy, photodynamic therapy (PDT) still acquired limited success in clinical nowadays due to the extremely serious hypoxia and immunosuppression tumor microenvironment. To ameliorate such a situation, we rationally designed and prepared cascade two-stage re-oxygenation and immune re-sensitization BSA-MHI148@SRF nanoparticles via hydrophilic and hydrophobic self-assembly strategy by using near-infrared photodynamic dye MHI148 chemically modified bovine serum albumin (BSA-MHI148) and multi-kinase inhibitor Sorafenib (SRF) as a novel tumor oxygen and immune microenvironment regulation drug. Benefiting from the accumulation of SRF in tumors, BSA-MHI148@SRF nanoparticles dramatically enhanced the PDT efficacy by promoting cascade two-stage tumor re-oxygenation mechanisms: (i) SRF decreased tumor oxygen consumption via inhibiting mitochondria respiratory. (ii) SRF increased the oxygen supply via inducing tumor vessel normalization. Meanwhile, the immunosuppression micro-environment was also obviously reversed by two-stage immune re-sensitization as follows: (i) Enhanced immunogenic cell death (ICD) production amplified by BSA-MHI148@SRF induced reactive oxygen species (ROS) generation enhanced T cell infiltration and improve its tumor cell killing ability. (ii) BSA-MHI148@SRF amplified tumor vessel normalization by VEGF inhibition also obviously reversed the tumor immune-suppression microenvironment. Finally, the growth of solid tumors was significantly depressed by such well-designed BSA-MHI148@SRF nanoparticles, which could be potential for clinical cancer therapy.

4.
Adv Mater ; 34(41): e2206121, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36017886

RESUMO

Currently, the role of the lysosome, endoplasmic reticulum, or dictyosome in the transcription and translation of programmed cell death ligand 1 (PD-L1) is well revealed, but the role and function of mitochondria in the PD-L1 expression in tumors is still not fully researched, making it hard to offer a novel PD-L1 regulation strategy. In this research, it is newly revealed that mitochondria oxidative phosphorylation (OXPHOS) depression can be used as an effective PD-L1 down-regulation method. To offer an ideal and high-effective tumor mitochondria-targeted OXPHOS depression nanosystem, IR-LND is prepared by conjugating mitochondria-targeted heptamethine cyanine dye IR-68 with mitochondrial complexes I and II depression agent lonidamine (LND), which then further self-assembled with albumin (Alb) to form IR-LND@Alb nanoparticles. By doing this, PD-L1 expression in tumors is selectively and effectively depressed by IR-LND@Alb nanoparticles. As expected, the anti-tumor efficacy of such a PD-L1 depression strategy is superior to conventional anti-PD-L1 monoclonal antibodies. Interestingly, IR-LND can also be served as a novel ideal promising photodynamic therapy (PDT) drug with self-oxygen and self-PD-L1 regulation capacity. All in all, this tumor-selective metabolic reprogramming platform to reactivate immunotherapy and sensitize for PDT effect, would open a new window for mitochondrial immunotherapy for cancer patients.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Albuminas , Anticorpos Monoclonais , Antígeno B7-H1/metabolismo , Carbocianinas , Linhagem Celular Tumoral , Depressão , Humanos , Fatores Imunológicos , Imunoterapia , Ligantes , Neoplasias/tratamento farmacológico , Oxigênio , Receptor de Morte Celular Programada 1/metabolismo , Estudos Prospectivos
5.
Carbohydr Polym ; 295: 119878, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989018

RESUMO

At present, the tumor's poor oxygen perfusion and limited tumor drug permeation are the major bottlenecks that limit the therapeutic effectiveness of the oxygen-sensitive antitumor therapies, like doxorubicin (Dox)-mediated chemotherapy and photodynamic therapy (PDT). To our best knowledge, the abnormal tumor mitochondria oxidative phosphorylation (OXPHOS) was the vital cause of such phenomenon, which induced the hypoxia tumor microenvironment and enhanced drug efflux from tumor cells via enhanced multidrug resistance protein 1 (MDR-1) expression. In this study, it was newly revealed that biguanide-modified chitosan (Bi-Ch) possessed ideal mitochondria depression capacity, leading to the following decreased dosage needed to disrupt mitochondrial function to reverse tumor hypoxia and depress MDR-1 expression. By doing this, Bi-Ch effectively enhanced Dox accumulation in tumor cells and amplified its cytotoxicity owing to the amplified ROS generation by Dox. Therefore, Bi-Ch could be used to improve the efficacy of oxygen-sensitive tumor therapies in vitro.


Assuntos
Quitosana , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Biguanidas/farmacologia , Biguanidas/uso terapêutico , Linhagem Celular Tumoral , Quitosana/metabolismo , Quitosana/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Mitocôndrias/metabolismo , Oxigênio
6.
Carbohydr Polym ; 277: 118869, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893274

RESUMO

After regular chemotherapy, the expression of programmed cell death ligand 1 (PD-L1) in almost all kinds of cancers is significantly increased, leading to reduced efficacy of T cell mediated immune killing in tumors. To solve this, a lot of PD-L1 antibodies were produced and used, but their high cost and serious toxic side effects still limit its usage. Recently, small molecule compounds that could effectively regulate PD-L1 expression possess the edges to solve the problems of PD-L1 antibodies. Chitosan oligosaccharide (COS), a biomaterial derived from the N-deacetylation product of chitin, has a broad spectrum of biological activities in treating tumors. However, the mechanism of its anti-cancer effect is still not well understood. Here, for the first time, we clearly identified that COS could inhibit the upregulated PD-L1 expression induced by interferon γ (IFN-γ) in various tumors via the AMPK activation and STAT1 inhibition. Besides, COS itself significantly restricted the growth of CT26 tumors by enhancing the T cell infiltration in tumors. Furthermore, we observed that combining COS with Gemcitabine (GEM), one of the typical chemotherapeutic drugs, leaded to a more remarkable tumor remission. Therefore, it was demonstrated that COS could be used as a useful way to improve the efficacy of existing chemotherapies by effective PD-L1 downregulation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Quitosana/farmacologia , Neoplasias do Colo/terapia , Imunoterapia , Oligossacarídeos/farmacologia , Fator de Transcrição STAT1/antagonistas & inibidores , Animais , Antineoplásicos/química , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Neoplasias do Colo/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Oligossacarídeos/química , Fator de Transcrição STAT1/metabolismo
7.
J Nanobiotechnology ; 19(1): 375, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34794446

RESUMO

BACKGROUND: Mild-temperature photothermal therapy (mild-PTT) has emerged as a highly promising antitumor strategy by triggering immunogenic cell death (ICD) to elicit both innate and adaptive immune responses for tumor control. However, mild-PTT still leads to the risk of tumor recurrence or metastasis because it could hardly completely eradicate tumors due to its impaired immunological efficacy owing to the enhanced PD-L1 expression in tumor cells after treatment. RESULTS: In this study, we described a hydrogen peroxide (H2O2) responsive manganese dioxide mineralized albumin nanocomposite loading with mitochondria function inhibitor phenformin (PM) and near-infrared photothermal dye indocyanine green (ICG) by modified two-step biomineralization method. In combination with ICG induced mild-PTT and PM mediated mitochondria dysfunction, PD-L1 expression was obviously down-regulated and the generated immunological responses was able to effectively attack the remaining tumor cells. Meanwhile, the risk of tumor metastasis was effectively inhibited by reducing the expression of tumor invasion-related signal molecules (TGF-ß and vimentin) after combining treatment. CONCLUSION: Such a strategy offers novel insight into the development of nanomedicine for mild-PTT as well as cancer immunotherapy, which can provide protection against tumor relapse post elimination of their initial and metastatic tumors.


Assuntos
Antígeno B7-H1 , Mitocôndrias/efeitos dos fármacos , Nanopartículas/química , Fenformin , Terapia Fototérmica , Albuminas/química , Animais , Antineoplásicos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomineralização/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Peróxido de Hidrogênio , Verde de Indocianina , Compostos de Manganês , Camundongos , Óxidos , Fenformin/química , Fenformin/farmacologia
8.
Nanoscale ; 13(31): 13473-13486, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34477752

RESUMO

BACKGROUND: Currently, limited tumor drug permeation, poor oxygen perfusion and immunosuppressive microenvironments are the most important bottlenecks that significantly reduce the efficacy of photodynamic therapy (PDT). The main cause of these major bottlenecks is the platelet activation maintained abnormal tumor vessel barriers. Thus, platelet inhibition may present a new way to most effectively enhance the efficacy of PDT. However, to the best of our knowledge, few studies have validated the effectiveness of such a way in enhancing the efficacy of PDT both in vivo and in vitro. In this study, perfluoro-N-(4-methylcyclohexyl) piperidine-loaded albumin (PMP@Alb) nanoparticles were discovered, which possess excellent platelet inhibition ability. After PMP@Alb treatment, remarkably enhanced intra-tumoral drug accumulation, oxygen perfusion and T cell infiltration could be observed owing to the disrupted tumor vessel barriers. Besides, the effect of ICG@Lip mediated PDT was significantly amplified by PMP@Alb nanoparticles. It was demonstrated that PMP@Alb could be used as a useful tool to improve the efficacy of existing PDT by disrupting tumor vessel barriers through effective platelet inhibition.


Assuntos
Nanopartículas , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Albuminas/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fármacos Fotossensibilizantes/farmacologia , Piperidinas/farmacologia , Microambiente Tumoral
9.
J Lipid Res ; 62: 100066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33711324

RESUMO

Endothelial-to-mesenchymal transition (EndMT), the process by which an endothelial cell (EC) undergoes a series of molecular events that result in a mesenchymal cell phenotype, plays an important role in atherosclerosis. 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), derived from the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine, is a proinflammatory lipid found in atherosclerotic lesions. Whether POVPC promotes EndMT and how simvastatin influences POVPC-mediated EndMT remains unclear. Here, we treated human umbilical vein ECs with POVPC, simvastatin, or both, and determined their effect on EC viability, morphology, tube formation, proliferation, and generation of NO and superoxide anion (O2•-). Expression of specific endothelial and mesenchymal markers was detected by immunofluorescence and immunoblotting. POVPC did not affect EC viability but altered cellular morphology from cobblestone-like ECs to a spindle-like mesenchymal cell morphology. POVPC increased O2- generation and expression of alpha-smooth muscle actin, vimentin, Snail-1, Twist-1, transforming growth factor-beta (TGF-ß), TGF-ß receptor II, p-Smad2/3, and Smad2/3. POVPC also decreased NO production and expression of CD31 and endothelial NO synthase. Simvastatin inhibited POVPC-mediated effects on cellular morphology, production of O2•- and NO, and expression of specific endothelial and mesenchymal markers. These data demonstrate that POVPC induces EndMT by increasing oxidative stress, which stimulates TGF-ß/Smad signaling, leading to Snail-1 and Twist-1 activation. Simvastatin inhibited POVPC-induced EndMT by decreasing oxidative stress, suppressing TGF-ß/Smad signaling, and inactivating Snail-1 and Twist-1. Our findings reveal a novel mechanism of atherosclerosis that can be inhibited by simvastatin.


Assuntos
Fosforilcolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...