Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172444, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615769

RESUMO

The development of antibiotic resistance threatens human and environmental health. Non-antibiotic stressors, including fungicides, may contribute to the spread of antibiotic resistance genes (ARGs). We determined the promoting effects of tebuconazole on ARG dissemination using a donor, Escherichia coli MG1655, containing a multidrug-resistant fluorescent plasmid (RP4) and a recipient (E. coli HB101). The donor was then incorporated into the soil to test whether tebuconazole could accelerate the spread of RP4 into indigenous bacteria. Tebuconazole promoted the transfer of the RP4 plasmid from the donor into the recipient via overproduction of reactive oxygen species (ROS), enhancement of cell membrane permeability and regulation of related genes. The dissemination of the RP4 plasmid from the donor to soil bacteria was significantly enhanced by tebuconazole. RP4 plasmid could be propagated into more genera of bacteria in tebuconazole-contaminated soil as the exposure time increased. These findings demonstrate that the fungicide tebuconazole promotes the spread of the RP4 plasmid into indigenous soil bacteria, revealing the potential risk of tebuconazole residues enhancing the dissemination of ARGs in soil environments.


Assuntos
Fungicidas Industriais , Plasmídeos , Microbiologia do Solo , Poluentes do Solo , Triazóis , Plasmídeos/genética , Triazóis/toxicidade , Poluentes do Solo/toxicidade , Fungicidas Industriais/toxicidade , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética
2.
Environ Sci Technol ; 58(6): 2931-2943, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38306257

RESUMO

From a "One Health" perspective, the global threat of antibiotic resistance genes (ARGs) is associated with modern agriculture practices including agrochemicals application. Chiral fungicides account for a considerable proportion of wildly used agrochemicals; however, whether and how their enantiomers lead to differential proliferation of antibiotic resistance in agricultural environments remain overlooked. Focused on the soil-earthworm ecosystem, we for the first time deciphered the mechanisms underlying the enantioselective proliferation of antibiotic resistance driven by the enantiomers of a typical chiral fungicide mandipropamid (i.e., R-MDP and S-MDP) utilizing a multiomic approach. Time-series metagenomic analysis revealed that R-MDP led to a significant enhancement of ARGs with potential mobility (particularly the plasmid-borne ARGs) in the earthworm intestinal microbiome. We further demonstrated that R-MDP induced a concentration-dependent facilitation of plasmid-mediated ARG transfer among microbes. In addition, transcriptomic analysis with verification identified the key aspects involved, where R-MDP enhanced cell membrane permeability, transfer ability, biofilm formation and quorum sensing, rebalanced energy production, and decreased cell mobility versus S-MDP. Overall, the findings provide novel insights into the enantioselective disruption of microbiome and resistome in earthworm gut by chiral fungicides and offer significant contributions to the comprehensive risk assessment of chiral agrochemicals in agroecosystems.


Assuntos
Fungicidas Industriais , Microbioma Gastrointestinal , Oligoquetos , Animais , Oligoquetos/genética , Fungicidas Industriais/farmacologia , Fungicidas Industriais/análise , Genes Bacterianos , Ecossistema , Estereoisomerismo , Resistência Microbiana a Medicamentos/genética , Solo , Antibacterianos/farmacologia , Proliferação de Células
3.
J Hazard Mater ; 455: 131559, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37163893

RESUMO

The high abundance of antibiotic resistance genes (ARGs) in the fungicide residual environment, posing a threat to the environment and human health, raises the question of whether and how fungicide promotes the prevalence and dissemination of antibiotic resistance. Here, we reported a novel mechanism underlying bidirectional regulation of a typical heavy-metal-containing fungicide mancozeb on the horizontal transfer of ARGs. Our findings revealed that mancozeb exposure significantly exerted oxidative and osmotic stress on the microbes and facilitated plasmid-mediated ARGs transfer, but its metallic portions (Mn and Zn) were potentially utilized as essential ions by microbes for metalating enzymes to deal with cellular stress and thus reduce the transfer. The results of transcriptome analysis with RT-qPCR confirmed that the expression levels of cellular stress responses and conjugation related genes were drastically altered. It can be concluded mancozeb bidirectionally regulated the ARGs dissemination which may be attributed to the diverse effects on the microbes by its different portions. This novel mechanism provides an updated understanding of neglected fungicide-triggered ARGs dissemination and crucial insight for comprehensive risk assessment of fungicides.


Assuntos
Fungicidas Industriais , Maneb , Metais Pesados , Zineb , Humanos , Resistência Microbiana a Medicamentos/genética , Maneb/toxicidade , Zineb/toxicidade , Genes Bacterianos , Fungicidas Industriais/toxicidade , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...