Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin Med ; 18(1): 42, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076903

RESUMO

BACKGROUND: Osteoarthritis (OA) is a chronic degenerative joint disease characterized by loss of joint function, which seriously reduces the quality of life of the elderly and imposes a heavy socioeconomic burden worldwide. Monotropein (MON), the main active ingredient of Morinda officinalis F.C. How, has exhibited therapeutic effects in different disease models. However, its potential effects on chondrocytes in an arthritic model remain unclear. This study aimed to evaluate the effects of MON in chondrocytes and a mouse model of OA, and explore the potential mechanisms. MATERIALS AND METHODS: Murine primary chondrocytes were pretreated with 10 ng/ml interleukin (IL)-1ß for 24 h to establish an in vitro model of OA, and then treated with different concentrations of MON (0, 25, 50 and 100 µM) for 24 h. The proliferation of the chondrocytes was assayed using ethynyl-deoxyuridine (EdU) staining. Immunofluorescence staining, western blotting and TUNEL staining were performed to assess the effects of MON on cartilage matrix degradation, apoptosis and pyroptosis. The mouse model of OA was constructed by surgical destabilization of the medial meniscus (DMM), and the animals were randomly divided into the sham-operated, OA and OA + MON groups. Following OA induction, the mice were given intraarticular injection of 100 µM MON or equal volume of normal saline twice a week for 8 weeks. The effects of MON on cartilage matrix degradation, apoptosis and pyroptosis were assessed as indicated. RESULTS: MON significantly accelerated the proliferation of chondrocytes, and inhibited cartilage matrix degradation, apoptosis and pyroptosis in the IL-1ß-stimulated cells by blocking the nuclear factor-kappa B (NF-κB) signaling pathway. In the mouse model as well, MON treatment alleviated OA progression and promoted cartilage repair by inhibiting cartilage matrix degradation, and chondrocyte apoptosis and pyroptosis through the inactivation of the NF-κB signaling pathway. Furthermore, the MON-treated arthritic mice exhibited better articular tissue morphology and lower OARSI scores. CONCLUSIONS: MON alleviated OA progression by inhibiting cartilage matrix degradation, and the apoptosis and pyroptosis of chondrocytes via NF-κB pathway inactivation, and is a promising alternative for the treatment of OA.

2.
Front Pharmacol ; 13: 949502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278181

RESUMO

Background: Spinal cord injury (SCI) is a common disorder of the central nervous system with considerable socio-economic burden. Andrographolide (Andro), the main active component of Andrographis paniculata, has exhibited neuroprotective effects in different models of neurological diseases. The aim of this study was to evaluate the neuroprotective effects of Andro against SCI and explore the related mechanisms. Methods: SCI was induced in rats by the Allen method, and the modeled animals were randomly divided into sham-operated, SCI, SCI + normal saline (NS) and SCI + Andro groups. The rats were injected intraperitoneally with Andro (1 mg/kg) or the same volume of NS starting day one after the establishment of the SCI model for 28 consecutive days. Post-SCI tissue repair and functional recovery were evaluated by measuring the spinal cord water content, footprint tests, Basso-Beattie-Bresnahan (BBB) scores, hematoxylin-eosin (HE) staining and Nissl staining. Apoptosis, oxidative stress and inflammation, as well as axonal regeneration and remyelination were analyzed using suitable markers. The in vitro model of SCI was established by treating cortical neurons with H2O2. The effects of Andro on apoptosis, oxidative stress and inflammation were evaluated as indicated. Results: Andro treatment significantly improved tissue repair and functional recovery after SCI by reducing apoptosis, oxidative stress and inflammation through the nuclear factor E2-related factor 2/heme oxygenase-1 (Nrf-2/HO-1) and nuclear factor-kappa B (NF-κB) signaling pathways. Furthermore, Andro treatment promoted M2 polarization of the microglial cells and contributed to axonal regeneration and remyelination to improve functional recovery after SCI. In addition, Andro also attenuated apoptosis, oxidative stress and inflammation in H2O2-stimulated cortical neurons in vitro. Conclusion: Andro treatment alleviated SCI by reducing apoptosis, oxidative stress and inflammation in the injured tissues and cortical neurons, and promoted axonal regeneration and remyelination for functional recovery.

3.
Front Endocrinol (Lausanne) ; 13: 902737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992144

RESUMO

Kisspeptin plays a vital role in mediating the stress-induced reproductive regulation. Cortisol, known as a stress-related hormone, is involved in gonadal development and sexual differentiation by binding with glucocorticoid receptor (GR) to regulate the expression of kiss gene. In the present study, cortisol treatment in yellowtail clownfish (Amphiprion clarkii) showed that the expression of kiss (kiss1 and kiss2) and gr (gr1 and gr2) genes were increased significantly. We demonstrated that the yellowtail clownfish Kiss neurons co-express the glucocorticoid receptors in the telencephalon, mesencephalon, cerebellum, and hypothalamus. We further cloned the promoter of kiss2 gene in yellowtail clownfish and identified the presence of putative binding sites for glucocorticoid receptors, estrogen receptors, androgen receptors, progesterone receptors, AP1, and C/EBP. Applying transient transfection in HEK293T cells of the yellowtail clownfish kiss2 promoter, cortisol (dexamethasone) treatment was shown to enhance the promoter activities of the yellowtail clownfish kiss2 gene in the presence of GRs. Deletion analysis of kiss2 promoter indicated that cortisol-induced promoter activities were located between position -660 and -433 with GR1, and -912 and -775 with GR2, respectively. Finally, point mutation studies on the kiss2 promoter showed that cortisol-stimulated promoter activity was mediated by one GRE site located at position -573 in the presence of GR1 and by each GRE site located at position -883, -860, -851, and -843 in the presence of GR2. Results of the present study provide novel evidence that cortisol could regulate the transcription of kiss2 gene in the yellowtail clownfish via GRE-dependent GR pathway.


Assuntos
Perciformes , Receptores de Glucocorticoides , Animais , Células HEK293 , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/farmacologia , Perciformes/genética , Regiões Promotoras Genéticas , Receptores de Glucocorticoides/genética
4.
Endocr Connect ; 11(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35904230

RESUMO

Kisspeptin system was shown to be a key factor in mediating social stress and reproduction. Yellowtail clownfish, Amphiprion clarkii, is a hermaphrodite fish, whose sex determination and gonadal development are affected by the social status of individuals. The yellowtail clownfish is a fantastic animal model to explore sex determination, but the social status and precise distribution of kiss mRNAs in the brain of this species are unknown. Hererin, a novel in situ hybridization technique, RNAscope, was used to investigate the distribution of kiss1 and kiss2 expressions in the brain of yellowtail clownfish. The coronal planes of brain showed that the kiss1 signal was mainly present in dorsal habenular nucleus (NHd) and kiss2 mRNA was widely expressed in telencephalon, midbrain, and hypothalamus, especially in dorsal part of the nucleus of the lateral recess (NRLd). Additionally, kiss1 and kiss2 signals have sexually dimorphic distribution. The kiss1 mRNA was distributed in NHd, the telencephalon, and lateral part of the diffuse nucleus of the inferior lobe (NDLIl) of females but in NHd and NDLIl of males. kiss2 signals were stronger in females than that in males. The distribution of kiss1 and kiss2 neurons in NHd of habenula and NRLd of hypothalamus may suggest that kiss genes associate environmental signaling and reproductive function in yellowtail clownfish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...