Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(32): 38808-38820, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37526484

RESUMO

Cu2O is currently an important protective material for domestic engineering and equipment used to exploit marine resources. Cu+ is considered to have more effective antibacterial and antifouling activities than Cu2+. However, disproportionation of Cu+ in the natural environment leads to its reduced bioavailability and weakened reactivity. Novel and functionalized Cu2O composites could enable efficient and environmentally friendly applications of Cu+. To this end, a series of three-dimensional porous Cu2O nanoparticles (3DNP-Cu2O) functionalized by organic (redox gel, R-Gel)-inorganic (reduced graphene oxide, rGO) hybrids─3DNP-Cu2O/rGOx@R-Gel─at room temperature by immobilization-reduction method was prepared and applied for protection against marine biofouling. 3DNP-Cu2O/rGO1.76@R-Gel includes rGO and R-Gel shape 3D porous Cu2O nanoparticles with diameters ∼177 nm and strong dispersion and antioxidant stability. Compared with commercial Cu2O (Cu2O-0), 3DNP-Cu2O/rGO1.76@R-Gel exhibited an ∼50% higher bactericidal rate, ∼96.22% higher water content, and ∼75% lower adhesion of mussels and barnacles. Moreover, 3DNP-Cu2O/rGOx@R-Gel maintains the same excellent, stable, and long-lasting bactericidal performance as Cu2O-0@R-Gel while reducing the average copper ion release concentration by ∼56 to 76%. This was also confirmed by X-ray diffraction, X-ray photoelectric spectroscopy (XPS), atomic absorption spectroscopy, and antifouling tests. In addition, XPS tests of rGO-Cu2+ and R-Gel-Cu2+, photocurrent tests of 3DNP-Cu2O/rGO1.76@R-Gel, and energy-dispersive spectrometry pictures of bacteria confirm that R-Gel and rGO act as electron donors and transfer substrates driving the reduction of Cu2+ (Cu2+ → Cu+) and the diffusion of Cu+. Thus, a self-growing antibacterial and antifouling system of 3DNP-Cu2O/rGO1.76@R-Gel was achieved. The mechanism of accelerated bacterial inactivation and resistance to mussel and barnacle adhesion by 3DNP-Cu2O/rGO1.76@R-Gel was interpreted. It is shown that rGO and R-Gel are important players in the antibacterial and antifouling system of 3DNP-Cu2O/rGO1.76@R-Gel.


Assuntos
Nanopartículas Metálicas , Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Porosidade , Incrustação Biológica/prevenção & controle , Antioxidantes/química , Escherichia coli/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Animais
2.
ACS Appl Mater Interfaces ; 15(16): 20325-20333, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043634

RESUMO

Under favorable regeneration conditions (120 °C, 100% CO2), ultrafast adsorption kinetics and excellent long-term cycle stability are still the biggest obstacles for amine-based solid CO2 adsorbents. Inspired by natural wood, a biochar with a highly ordered pore structure and excellent thermal conductivity was prepared and used as a carrier of organic amines to prepare ideal CO2 adsorbents. The results showed that the prepared adsorbent has a very high adsorption working capacity (4.23 mmol CO2·g-1), and its performance remains stable even after 30 adsorption-desorption cycles in the harsh desorption environment (120 °C, 100% CO2). Due to the existence of the hierarchical structure, the adsorbent exhibited ultra-fast adsorption kinetics, and the reaction rate constant is 37 times higher than that of traditional silica. This adsorbent also showed a very low regeneration heat of 1.64 MJ·kg-1 (CO2), which is especially important for the practical application. Therefore, these biochar-based adsorbents derived from natural wood make the CO2 capture process promising.

3.
Sci Rep ; 10(1): 9076, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32494030

RESUMO

We consider the finite-temperature properties of the extended Bose-Hubbard model realized recently in an ETH experiment [Nature 532, 476 (2016)]. Competing short- and global-range interactions accommodate fascinating collective phenomena. We formulate a self-consistent mean-field theory to describe the behaviors of the system at finite temperatures. At a fixed chemical potential, we map out the distributions of the superfluid order parameters and number densities with respect to the temperatures. For a charge density wave, we find that the global-range interaction enhances the charge order by increasing the transition temperature at which the charge order melts out, while for a supersolid phase, we find that the disappearance of the charge order and the superfluid order occurs at different temperature. At a fixed number-density filling factor, we extract the temperature dependence of the thermodynamic functions such as internal energy, specific heat and entropy. Across the superfluid phase transition, the specific heat has a discontinuous jump.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...