Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168414

RESUMO

The majority of patients with benign prostate hyperplasia (BPH) exhibit chronic prostate inflammation and the extent of inflammation correlates with the severity of symptoms. How inflammation contributes to prostate enlargement and/or BPH symptoms and the underlying mechanisms are not clearly understood. We established a unique mouse model Prostate Ovalbumin Expressing Transgenic 3 (POET3) that mimics chronic non-bacterial prostatitis in men to study the role of inflammation in prostate hyperplasia. After the injection of ovalbumin peptide-specific T cells, POET3 prostates exhibited an influx of inflammatory cells and an increase in pro-inflammatory cytokines that led to epithelial and stromal hyperplasia. We have previously demonstrated with the POET3 model that inflammation expands the basal prostate stem cell (bPSC) population and promotes bPSC differentiation in organoid cultures. In this study, we investigated the mechanisms underlying the impact of inflammation on bPSC. We found that AR activity was enhanced in inflamed bPSC and was essential for bPSC differentiation in organoid cultures. Most importantly, we identified, for the first time, interleukin 1 receptor antagonist (IL-1RA) as a key regulator of AR in basal stem cells. IL-1RA was one of the top genes upregulated by inflammation and inhibition of IL-1RA abrogated the enhanced AR nuclear accumulation and activity in organoids derived from inflamed bPSC. The mirroring effects of IL-1RA recombinant protein and IL-1α neutralizing antibody suggest that IL-1RA may function by antagonizing IL-1α inhibition of AR expression. Furthermore, we established a lineage tracing model to follow bPSC during inflammation and under castrate conditions. We found that inflammation induced bPSC proliferation and differentiation into luminal cells even under castrate conditions, indicating that AR activation driven by inflammation in bPSC is sufficient for their proliferation and differentiation under androgen-deprived conditions. However, proliferation of the differentiated bPSC in the luminal layer significantly diminished with castration, suggesting inflammation may not maintain AR activity in stromal cells, as stromal cells deprived of androgen after castration could no longer provide paracrine growth factors essential for luminal proliferation. Taken together, we have discovered novel mechanisms through which inflammation modulates AR signaling in bPSC and induces bPSC luminal differentiation that contributes to prostate hyperplasia.

2.
Mol Cancer Res ; 17(6): 1253-1263, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30824526

RESUMO

Cholesterol sulfotransferase, SULT2B1b, has been demonstrated to modulate both androgen receptor activity and cell growth properties. However, the mechanism(s) by which SULT2B1b alters these properties within prostate cancer cells has not been described. Furthermore, specific advantages of SULT2B1b expression in prostate cancer cells are not understood. In these studies, single-cell mRNA sequencing was conducted to compare the transcriptomes of SULT2B1b knockdown (KD) versus Control KD LNCaP cells. Over 2,000 differentially expressed genes were identified along with alterations in numerous canonical pathways, including the death receptor signaling pathway. The studies herein demonstrate that SULT2B1b KD increases TNFα expression in prostate cancer cells and results in NF-κB activation in a TNF-dependent manner. More importantly, SULT2B1b KD significantly enhances TNF-mediated apoptosis in both TNF-sensitive LNCaP cells and TNF-resistant C4-2 cells. Overexpression of SULT2B1b in LNCaP cells also decreases sensitivity to TNF-mediated cell death, suggesting that SULT2B1b modulates pathways dictating the TNF sensitivity capacity of prostate cancer cells. Probing human prostate cancer patient datasets further supports this work by providing evidence that SULT2B1b expression is inversely correlated with TNF-related genes, including TNF, CD40LG, FADD, and NFKB1. Together, these data provide evidence that SULT2B1b expression in prostate cancer cells enhances resistance to TNF and may provide a growth advantage. In addition, targeting SULT2B1b may induce an enhanced therapeutic response to TNF treatment in advanced prostate cancer. IMPLICATIONS: These data suggest that SULT2B1b expression enhances resistance to TNF and may promote prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração/metabolismo , Sulfotransferases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Apoptose/fisiologia , Morte Celular/fisiologia , Linhagem Celular Tumoral , Proteína de Domínio de Morte Associada a Fas/metabolismo , Humanos , Masculino , Subunidade p50 de NF-kappa B/metabolismo , Próstata/metabolismo , Receptores Androgênicos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia
3.
Breast Cancer Res ; 16(2): R26, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24636070

RESUMO

INTRODUCTION: Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined. METHODS: Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq). RESULTS: In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase. CONCLUSIONS: We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle.


Assuntos
Mama/metabolismo , Epitélio/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pré-Menopausa/genética , Bancos de Tecidos , Transcriptoma/genética , Adulto , Algoritmos , Feminino , Fase Folicular/genética , Redes Reguladoras de Genes , Humanos , Modelos Lineares , Fase Luteal/genética , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...