Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Res ; 52(1): 119, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526112

RESUMO

Congenital avian leukosis virus subgroup J (ALV-J) infection can induce persistent immunotolerance in chicken, however, the underlying mechanism remains unclear. Here, we demonstrate that congenital ALV-J infection induces the production of high-frequency and activated CD4+CD25+ Tregs that maintain persistent immunotolerance. A model of congenital infection by ALV-J was established in fertilized eggs, and hatched chicks showed persistent immunotolerance characterized by persistent viremia, immune organ dysplasia, severe imbalance of the ratio of CD4+/CD8+ T cells in blood and immune organs, and significant decrease in CD3+ T cells and Bu-1+ B cells in the spleen. Concurrently, the mRNA levels of IL-2, IL-10, and IFN-γ showed significant fluctuations in immune organs. Moreover, the frequency of CD4+CD25+ Tregs in blood and immune organs significantly increased, and the frequency of CD4+CD25+ Tregs was positively correlated with changes in ALV-J load in immune organs. Interestingly, CD4+CD25+ Tregs increased in the marginal zone of splenic nodules in ALV-J-infected chickens and dispersed to the germinal center. In addition, the proliferation and activation of B cells in splenic nodules was inhibited, and the number of IgM+ and IgG+ cells in the marginal zone significantly decreased. We further found that the mRNA levels of TGF- ß and CTLA-4 in CD4+CD25+ Tregs of ALV-J-infected chickens significantly increased. Together, high-frequency and activated CD4+CD25+ Tregs inhibited B cells functions by expressing the inhibitory cytokine TGF-ß and inhibitory surface receptor CTLA-4, thereby maintaining persistent immunotolerance in congenital ALV-J-infected chickens.


Assuntos
Vírus da Leucose Aviária/imunologia , Leucose Aviária/imunologia , Galinhas , Tolerância Imunológica , Doenças das Aves Domésticas/imunologia , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos , Embrião de Galinha , Organismos Livres de Patógenos Específicos
2.
Vet Microbiol ; 247: 108781, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768227

RESUMO

Immune tolerance induced by avian leukosis virus subgroup J (ALV-J) is a prerequisite for tumorigenesis. Although we had reported that B cell anergy induced by ALV-J was the main reason for immune tolerance, the molecular mechanism still remains unclear. Here, we found SU protein of ALV-J interacted with tyrosine kinase Lyn (a key protein in BCR signaling pathway) by confocal laser scanning microscopy and co-immunoprecipitation test, which suggested that Lyn might play an important role in B cell anergy induced by ALV-J. Correspondingly, the mRNA and protein level of Lyn was significantly up-regulated in B cells after ALV-J infection. Subsequently, the phosphorylated protein levels of Lyn at Tyr507 site were significantly up-regulated in ALV-J-infected B cells after BCR signal activation, but the phosphorylated protein level of Syk (a direct substrate of Lyn) at Tyr525/526 site, Ca2+ flux, and NF-κB p65 protein level were significantly down-regulated. Interestingly, the phosphorylated protein level of Syk at Tyr525/526 site, Ca2+ flux, and NF-κB p65 protein level were both significantly retrieved after the shLyn treatment in B cells infected by ALV-J. In summary, these results indicated that ALV-J activated the negative regulatory effect of phosphorylated Lyn protein at 507 site in BCR signal transduction pathway and then mediated B cell anergy, which will provide a new insight for revealing the pathogenesis of immune tolerance induced by ALV-J.


Assuntos
Vírus da Leucose Aviária/imunologia , Linfócitos B/imunologia , Anergia Clonal , Transdução de Sinais/imunologia , Quinases da Família src/genética , Animais , Leucose Aviária/imunologia , Leucose Aviária/virologia , Vírus da Leucose Aviária/classificação , Linfócitos B/virologia , Galinhas/imunologia , Galinhas/virologia , Regulação da Expressão Gênica , Fosforilação , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos , Regulação para Cima
3.
Virus Res ; 264: 32-39, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30797826

RESUMO

The lifecycle of avian leukosis virus subgroup J (ALV-J), a typical tumorigenic retrovirus, is highly dependent upon host cellular proteins. However, there have been few studies directed at uncovering the host proteins responsible for ALV-J replication, which could provide insights into new strategies for ALV-J prevention and control. Here, we used proteomics to identify the association of differential levels of collagen triple helix-repeat-containing 1 (CTHRC1) and with viral replication. Our results revealed that CTHRC1 was significantly upregulated in ALV-J-infected cells in vitro, and these findings were confirmed in vivo. Additionally, CTHRC1 overexpression facilitated ALV-J replication, whereas CTHRC1 knockdown suppressed this activity. Moreover, we found that ALV-J drove CTHRC1 translocation from the nucleus to the cytosol through interactions with the ALV-J envelope glycoprotein. These results revealed CTHRC1 as a shutting protein is recruited by ALV-J to facilitate viral replication.


Assuntos
Vírus da Leucose Aviária/fisiologia , Proteínas da Matriz Extracelular/genética , Interações entre Hospedeiro e Microrganismos , Proteínas do Envelope Viral/genética , Replicação Viral , Animais , Linhagem Celular , Embrião de Galinha , Galinhas/virologia , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/virologia , Proteômica , Proteínas do Envelope Viral/metabolismo
4.
Retrovirology ; 16(1): 1, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602379

RESUMO

BACKGROUND: The pathogenesis of immunological tolerance caused by avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, is largely unknown. RESULTS: In this study, the development, differentiation, and immunological capability of B cells and their progenitors infected with ALV-J were studied both morphologically and functionally by using a model of ALV-J congenital infection. Compared with posthatch infection, congenital infection of ALV-J resulted in severe immunological tolerance, which was identified as the absence of detectable specific antivirus antibodies. In congenitally infected chickens, immune organs, particularly the bursa of Fabricius, were poorly developed. Moreover, IgM-and IgG-positive cells and total immunoglobulin levels were significantly decreased in these chickens. Large numbers of bursa follicles with no differentiation into cortex and medulla indicated that B cell development was arrested at the early stage. Flow cytometry analysis further confirmed that ALV-J blocked the differentiation of CD117+chB6+ B cell progenitors in the bursa of Fabricius. Furthermore, both the humoral immunity and the immunological capability of B cells and their progenitors were significantly suppressed, as assessed by (a) the antibody titres against sheep red blood cells and the Marek's disease virus attenuated serotype 1 vaccine; (b) the proliferative response of B cells against thymus-independent antigen lipopolysaccharide (LPS) in the spleen germinal centres; and (c) the capacities for proliferation, differentiation and immunoglobulin gene class-switch recombination of B cell progenitors in response to LPS and interleukin-4(IL-4) in vitro. CONCLUSIONS: These findings suggested that the anergy of B cells in congenitally infected chickens is caused by the developmental arrest and dysfunction of B cell progenitors, which is an important factor for the immunological tolerance induced by ALV-J.


Assuntos
Vírus da Leucose Aviária/imunologia , Leucose Aviária/congênito , Subpopulações de Linfócitos B/patologia , Anergia Clonal , Doenças das Aves Domésticas/congênito , Células-Tronco/patologia , Animais , Anticorpos Antivirais/sangue , Leucose Aviária/patologia , Vírus da Leucose Aviária/patogenicidade , Subpopulações de Linfócitos B/química , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/virologia , Bolsa de Fabricius/patologia , Diferenciação Celular , Proliferação de Células , Galinhas , Citometria de Fluxo , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Doenças das Aves Domésticas/patologia , Proteínas Proto-Oncogênicas c-kit/análise , Células-Tronco/química , Células-Tronco/imunologia , Células-Tronco/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...