Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 399, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970101

RESUMO

Spinal cord injury (SCI) represents a profound central nervous system affliction, resulting in irreversibly compromised daily activities and disabilities. SCI involves excessive inflammatory responses, which are characterized by the existence of high levels of proinflammatory M1 macrophages, and neuronal mitochondrial energy deficit, exacerbating secondary damage and impeding axon regeneration. This study delves into the mechanistic intricacies of SCI, offering insights from the perspectives of neuroimmune regulation and mitochondrial function, leading to a pro-fibrotic macrophage phenotype and energy-supplying deficit. To address these challenges, we developed a smart scaffold incorporating enzyme mimicry nanoparticle-ceriumoxide (COPs) into nanofibers (NS@COP), which aims to pioneer a targeted neuroimmune repair strategy, rescuing CGRP receptor on macrophage and concurrently remodeling mitochondrial function. Our findings indicate that the integrated COPs restore the responsiveness of pro-inflammatory macrophages to calcitonin gene-related peptide (CGRP) signal by up-regulating receptor activity modifying protein 1 (RAMP1), a vital component of the CGRP receptor. This promotes macrophage fate commitment to an anti-inflammatory pro-resolution M2 phenotype, then alleviating glial scar formation. In addition, NS@COP implantation also protected neuronal mitochondrial function. Collectively, our results suggest that the strategy of integrating nanozyme COP nanoparticles into a nanofiber scaffold provides a promising therapeutic candidate for spinal cord trauma via rational regulation of neuroimmune communication and mitochondrial function.


Assuntos
Axônios , Macrófagos , Nanofibras , Regeneração Nervosa , Traumatismos da Medula Espinal , Animais , Axônios/metabolismo , Nanofibras/química , Regeneração Nervosa/efeitos dos fármacos , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ratos , Alicerces Teciduais/química , Nanopartículas/química , Ratos Sprague-Dawley , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Feminino , Camundongos Endogâmicos C57BL
2.
J Control Release ; 367: 791-805, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341179

RESUMO

Epidural fibrosis (EF), associated with various biological factors, is still a major troublesome clinical problem after laminectomy. In the present study, we initially demonstrate that sensory nerves can attenuate fibrogenic progression in EF animal models via the secretion of calcitonin gene-related peptide (CGRP), suggesting a new potential therapeutic target. Further studies showed that CGRP could inhibit the reprograming activation of fibroblasts through PI3K/AKT signal pathway. We subsequently identified metformin (MET), the most widely prescribed medication for obesity-associated type 2 diabetes, as a potent stimulator of sensory neurons to release more CGRP via activating CREB signal way. We copolymerized MET with innovative polycaprolactone (PCL) nanofibers to develop a metformin-grafted PCL nanoscaffold (METG-PCLN), which could ensure stable long-term drug release and serve as favorable physical barriers. In vivo results demonstrated that local implantation of METG-PCLN could penetrate into dorsal root ganglion cells (DRGs) to promote the CGRP synthesis, thus continuously inhibit the fibroblast activation and EF progress for 8 weeks after laminectomy, significantly better than conventional drug loading method. In conclusion, this study reveals the unprecedented potential of sensory neurons to counteract EF through CGRP signaling and introduces a novel strategy employing METG-PCLN to obstruct EF by fine-tuning sensory nerve-regulated fibrogenesis.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Diabetes Mellitus Tipo 2 , Poliésteres , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Fosfatidilinositol 3-Quinases , Fibrose , Fibroblastos/metabolismo
3.
Med Phys ; 50(7): 4182-4196, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37162252

RESUMO

BACKGROUND: Cervical spinal malalignment and instability are frequently occurring pathological conditions involving neck pain, radiculopathy, and myelopathy, often requiring surgical intervention. Accurate assessment of cervical alignment and instability are essential in surgical planning and evaluating postoperative outcomes. PURPOSE: To automatically measure the sagittal alignment and instability of the cervical spine, we develop a novel deep-learning model by detecting landmarks on cervical radiographs. METHODS: We introduce the transformer-embedded residual network (ResNet) as the network's core to automatically identify vertebral landmarks on digital and film-transformed cervical radiographs, and simultaneously measure the segmental Cobb angle and horizontal displacement. A Transformer Module was embedded into the latent space to extract the relationship between different vertebrae. Then a Rotating Attention Module was integrated between the encoder-decoder pairs to highlight the key points and maintain more details. Finally, a Vector Loss Module was proposed to restrain the orientation of the adjacent vertebra to reduce misdetection. All images were obtained from local hospital. Digital images were split into training, validation, and test subsets (896, 225, and 353 images, respectively). Likewise, film-transformed images were split into 404, 115, and 150 images, respectively. The results of the model were compared with manual measurements. RESULTS: Our deep learning algorithm achieved mean absolute difference (MAD) at a level of 2.20° and 2.33°, symmetric mean absolute error(SMAPE)at 16.63% and 19.35%, respectively, when measuring Cobb angle on digital images and films. On evaluating cervical instability, the diagnostic accuracy, sensitivity, specificity, precision, and F1-score evaluation metrics were calculated. The corresponding values were 89.80%, 86.49%, 90.68%, 71.11%, and 78.05% on digital images, and 90.00%, 83.78%, 91.15%, 75.61%, and 79.49% on film-transformed images, which were comparable to experienced surgeons. Visualization results demonstrated robust effectiveness in subjects with severe osteophytes or artifacts. CONCLUSION: This study presents a novel and efficient deep-learning model to assist landmarks identification and angulation and displacement calculation on lateral cervical spine radiographs, and demonstrates excellent accuracy in measuring cervical alignment and sound sensitivity and specificity in cervical instability diagnosis. It should be helpful for future research and clinical applications.


Assuntos
Vértebras Cervicais , Coluna Vertebral , Humanos , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Radiografia , Pescoço
4.
J Nanobiotechnology ; 21(1): 76, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864461

RESUMO

Intervertebral disc degeneration (IDD) has been identified as one of the predominant factors leading to persistent low back pain and disability in middle-aged and elderly people. Dysregulation of Prostaglandin E2 (PGE2) can cause IDD, while low-dose celecoxib can maintain PGE2 at the physiological level and activate the skeletal interoception. Here, as nano fibers have been extensively used in the treatment of IDD, novel polycaprolactone (PCL) nano fibers loaded with low-dose celecoxib were fabricated for IDD treatment. In vitro studies demonstrated that the nano fibers had the ability of releasing low-dose celecoxib slowly and sustainably and maintain PGE2. Meanwhile, in a puncture-induced rabbit IDD model, the nano fibers reversed IDD. Furthermore, low-dose celecoxib released from the nano fibers was firstly proved to promote CHSY3 expression. In a lumbar spine instability-induced mouse IDD model, low-dose celecoxib inhibited IDD in CHSY3wt mice rather than CHSY3-/- mice. This model indicated that CHSY3 was indispensable for low-dose celecoxib to alleviate IDD. In conclusion, this study developed a novel low-dose celecoxib-loaded PCL nano fibers to reverse IDD by maintaining PGE2 at the physiological level and promoting CHSY3 expression.


Assuntos
Dinoprostona , Degeneração do Disco Intervertebral , Animais , Camundongos , Coelhos , Celecoxib/farmacologia , Modelos Animais de Doenças , Degeneração do Disco Intervertebral/tratamento farmacológico
5.
Mater Today Bio ; 17: 100469, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36340590

RESUMO

Recurrent low back pain after spinal surgeries, such as lumbar laminectomy, is a major complication of excessive epidural fibrosis. Although multiple preclinical and clinical methods have been aimed at ameliorating epidural fibrosis, their safety and efficacy remain largely unclear. Single implanted electrospun fibrous membranes provide physical barriers that can decrease tissue fibrosis after surgery; however, they also trigger local inflammation due to the implantation of a foreign body, thus subsequently attenuating their anti-fibrosis properties. Here, we designed a strategy that permits easy incorporation of mefloquine into polylactic acid membranes, and stable long-term mefloquine release, to potentially improve anti-fibrosis effects and relieve or prevent low back pain. The electrospun fibrous membranes grafted with mefloquine showed a well-controlled early temporary peak release, and secondary drug release occurred smoothly over several weeks. Histopathological and histomorphometric results indicated that the drug-loaded membranes had excellent anti-fibrosis effects after laminectomy in rats. Inflammation and neovascularization at the surgical site indicated that the mefloquine-grafted electrospun fibrous membranes provided sustained anti-inflammatory outcomes while effectively alleviating associated neuropathic pain hypersensitivity. In summary, our study indicated that polylactic acid-mefloquine grafted electrospun fibrous membranes may be a potential local agent to mitigate epidural fibrosis and support sensory neurological function after laminectomy, thereby potentially improving patients' postoperative outcomes.

6.
Adv Sci (Weinh) ; 9(30): e2202620, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36047655

RESUMO

Sensory nerves are long being recognized as collecting units of various outer stimuli; recent advances indicate that the sensory nerve also plays pivotal roles in maintaining organ homeostasis. Here, this study shows that sensory nerve orchestrates intervertebral disc (IVD) homeostasis by regulating its extracellular matrix (ECM) metabolism. Specifically, genetical sensory denervation of IVD results in loss of IVD water preserve molecule chondroitin sulfate (CS), the reduction of CS bio-synthesis gene chondroitin sulfate synthase 1 (CHSY1) expression, and dysregulated ECM homeostasis of IVD. Particularly, knockdown of sensory neuros calcitonin gene-related peptide (CGRP) expression induces similar ECM metabolic disorder compared to sensory nerve denervation model, and this effect is abolished in CHSY1 knockout mice. Furthermore, in vitro evidence shows that CGRP regulates nucleus pulposus cell CHSY1 expression and CS synthesis via CGRP receptor component receptor activity-modifying protein 1 (RAMP1) and cyclic AMP response element-binding protein (CREB) signaling. Therapeutically, local injection of forskolin significantly attenuates IVD degeneration progression in mouse annulus fibrosus puncture model. Overall, these results indicate that sensory nerve maintains IVD ECM homeostasis via CGRP/CHSY1 axis and promotes IVD repair, and this expands the understanding concerning how IVD links to sensory nerve system, thus shedding light on future development of novel therapeutical strategy to IVD degeneration.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Colforsina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Matriz Extracelular/metabolismo , Homeostase , Disco Intervertebral/inervação , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Glucuronosiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...