Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 458, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797860

RESUMO

BACKGROUND: The endosperm serves as the primary source of nutrients for maize (Zea mays L.) kernel embryo development and germination. Positioned at the base of the endosperm, the transfer cells (TCs) of the basal endosperm transfer layer (BETL) generate cell wall ingrowths, which enhance the connectivity between the maternal plant and the developing kernels. These TCs play a crucial role in nutrient transport and defense against pathogens. The molecular mechanism underlying BETL development in maize remains unraveled. RESULTS: This study demonstrated that the MYB-related transcription factor ZmMYBR29, exhibited specific expression in the basal cellularized endosperm, as evidenced by in situ hybridization analysis. Utilizing the CRISPR/Cas9 system, we successfully generated a loss-of-function homozygous zmmybr29 mutant, which presented with smaller kernel size. Observation of histological sections revealed abnormal development and disrupted morphology of the cell wall ingrowths in the BETL. The average grain filling rate decreased significantly by 26.7% in zmmybr29 mutant in comparison to the wild type, which impacted the dry matter accumulation within the kernels and ultimately led to a decrease in grain weight. Analysis of RNA-seq data revealed downregulated expression of genes associated with starch synthesis and carbohydrate metabolism in the mutant. Furthermore, transcriptomic profiling identified 23 genes that expressed specifically in BETL, and the majority of these genes exhibited altered expression patterns in zmmybr29 mutant. CONCLUSIONS: In summary, ZmMYBR29 encodes a MYB-related transcription factor that is expressed specifically in BETL, resulting in the downregulation of genes associated with kernel development. Furthermore, ZmMYBR29 influences kernels weight by affecting the grain filling rate, providing a new perspective for the complementation of the molecular regulatory network in maize endosperm development.


Assuntos
Grão Comestível , Endosperma , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sistemas CRISPR-Cas
2.
Plant Physiol ; 195(2): 1642-1659, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38431524

RESUMO

Maize (Zea mays) smut is a common biotrophic fungal disease caused by Ustilago maydis and leads to low maize yield. Maize resistance to U. maydis is a quantitative trait. However, the molecular mechanism underlying the resistance of maize to U. maydis is poorly understood. Here, we reported that a maize mutant caused by a single gene mutation exhibited defects in both fungal resistance and plant development. maize mutant highly susceptible to U. maydis (mmsu) with a dwarf phenotype forms tumors in the ear. A map-based cloning and allelism test demonstrated that 1 gene encoding a putative arogenate dehydratase/prephenate dehydratase (ADT/PDT) is responsible for the phenotypes of the mmsu and was designated as ZmADT2. Combined transcriptomic and metabolomic analyses revealed that mmsu had substantial differences in multiple metabolic pathways in response to U. maydis infection compared with the wild type. Disruption of ZmADT2 caused damage to the chloroplast ultrastructure and function, metabolic flux redirection, and reduced the amounts of salicylic acid (SA) and lignin, leading to susceptibility to U. maydis and dwarf phenotype. These results suggested that ZmADT2 is required for maintaining metabolic flux, as well as resistance to U. maydis and plant development in maize. Meanwhile, our findings provided insights into the maize response mechanism to U. maydis infection.


Assuntos
Resistência à Doença , Doenças das Plantas , Zea mays , Zea mays/microbiologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hidroliases/genética , Hidroliases/metabolismo , Basidiomycota/fisiologia , Regulação da Expressão Gênica de Plantas , Fenótipo , Mutação/genética , Ácido Salicílico/metabolismo , Ustilago/genética
3.
J Exp Bot ; 74(18): 5694-5708, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37490479

RESUMO

The mitochondrion is a semi-autonomous organelle that provides energy for cell activities through oxidative phosphorylation. In this study, we identified a defective kernel 66 (dek66)-mutant maize with defective kernels. We characterized a candidate gene, DEK66, encoding a ribosomal assembly factor located in mitochondria and possessing GTPase activity (which belongs to the ribosome biogenesis GTPase A family). In the dek66 mutant, impairment of mitochondrial structure and function led to the accumulation of reactive oxygen species and promoted programmed cell death in endosperm cells. Furthermore, the transcript levels of most of the key genes associated with nutrient storage, mitochondrial respiratory chain complex, and mitochondrial ribosomes in the dek66 mutant were significantly altered. Collectively, the results suggest that DEK66 is essential for the development of maize kernels by affecting mitochondrial function. This study provides a reference for understanding the impact of a mitochondrial ribosomal assembly factor in maize kernel development.


Assuntos
Proteínas de Plantas , Zea mays , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Endosperma/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Regulação da Expressão Gênica de Plantas
4.
BMC Plant Biol ; 20(1): 553, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33297963

RESUMO

BACKGROUND: Pentatricopeptide repeat (PPR) proteins compose a large protein family whose members are involved in both RNA processing in organelles and plant growth. Previous reports have shown that E-subgroup PPR proteins are involved in RNA editing. However, the additional functions and roles of the E-subgroup PPR proteins are unknown. RESULTS: In this study, we developed and identified a new maize kernel mutant with arrested embryo and endosperm development, i.e., defective kernel (dek) 55 (dek55). Genetic and molecular evidence suggested that the defective kernels resulted from a mononucleotide alteration (C to T) at + 449 bp within the open reading frame (ORF) of Zm00001d014471 (hereafter referred to as DEK55). DEK55 encodes an E-subgroup PPR protein within the mitochondria. Molecular analyses showed that the editing percentage of 24 RNA editing sites decreased and that of seven RNA editing sites increased in dek55 kernels, the sites of which were distributed across 14 mitochondrial gene transcripts. Moreover, the splicing efficiency of nad1 introns 1 and 4 and nad4 intron 1 significantly decreased in dek55 compared with the wild type (WT). These results indicate that DEK55 plays a crucial role in RNA editing at multiple sites as well as in the splicing of nad1 and nad4 introns. Mutation in the DEK55 gene led to the dysfunction of mitochondrial complex I. Moreover, yeast two-hybrid assays showed that DEK55 interacts with two multiple organellar RNA-editing factors (MORFs), i.e., ZmMORF1 (Zm00001d049043) and ZmMORF8 (Zm00001d048291). CONCLUSIONS: Our results demonstrated that a mutation in the DEK55 gene affects the mitochondrial function essential for maize kernel development. Our results also provide novel insight into the molecular functions of E-subgroup PPR proteins involved in plant organellar RNA processing.


Assuntos
Complexo I de Transporte de Elétrons/genética , NADH Desidrogenase/genética , Proteínas de Plantas/genética , Edição de RNA , Splicing de RNA , Zea mays/genética , Sequência de Bases , Sítios de Ligação/genética , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Íntrons/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/classificação , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , NADH Desidrogenase/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Sementes/metabolismo , Zea mays/metabolismo
5.
Environ Pollut ; 236: 619-625, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29433102

RESUMO

As a transitional zone between riverine and marine environments, an estuary plays an important role for the sources, accumulation and transport of microplastics. Although estuarine environments are hotspots of microplastic pollution, the correlation between microplastic pollution and aquatic organisms is less known. Here we investigated microplastic pollution in wild oysters Saccostrea cucullata from 11 sampling sites along the Pearl River Estuary in South China. The microplastic abundances in oysters ranged from 1.4 to 7.0 items per individual or from 1.5 to 7.2 items per gram tissue wet weight, which were positively related to those in surrounding waters. The oysters near urban areas contained significantly more microplastics than those near rural areas. Fibers accounted for 69.4% of the total microplastics in oysters. Microplastic sizes varied from 20 to 5000 µm and 83.9% of which were less than 100 µm. Light color microplastics were significantly more common than dark color ones. Based on the results, oysters are recommended as a biomonitor for the microplastic pollution in estuaries.


Assuntos
Monitoramento Ambiental , Ostreidae/química , Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos , China , Estuários , Rios
6.
Huan Jing Ke Xue ; 35(12): 4663-70, 2014 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-25826939

RESUMO

Concentrations of copper, lead, cadmium, arsenic, hexachlorcyclohexane (HCHs) and dichlorodiphenyltrichloroethane (DDTs) in the water and the fish samples collected separately from fish pond, markets and supermarkets in four cities of Guangdong Province were measured by using GC-ECD, flame atomic absorption spectrometry and atomic fluorescence spectrometry. Health risk assessments associated with Cu, Pd, Cd, As, HCHs and DDTs were conducted based on the model of health risk assessment recommended by the US EPA. The results showed that the concentration ranges of Cu, Pd, Cd, As, HCHs and DDTs in water samples were nd-0.101 mg x L(-1), nd-0.097 mg x L(-1), nd-0.003 27 mg x L(-1), 0.0121-0.08127 mg x L(-1), 2.63-37.18 ng x L(-1) and 2.05-12.21 ng x L(-1), respectively. The health risk assessment indicates that the carcinogenic and non-carcinogenic risks of Cu, Pd, Cd, HCHs and DDTs in Tilapias both lower than the highest acceptable level of risk set by ICRP, but As cancer risk value slightly exceeded the upper limit of the acceptable risk levels in city population.


Assuntos
Metais Pesados/análise , Resíduos de Praguicidas/análise , Tilápia , Poluentes Químicos da Água/análise , Animais , China , DDT/análise , Hidrocarbonetos Clorados/análise , Lagoas/química , Medição de Risco
7.
Huan Jing Ke Xue ; 34(3): 1211-7, 2013 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-23745436

RESUMO

Ordered mesoporous carbon-Au nanoparticles (OMC-Au) nanocomposites were synthesized by a one-step chemical reduction route, and an OMC-Au/L-Lysine/Au composite film-modified glassy carbon electrode (GCE) was constructed. The microstructure of OMC and OMC-Au/L-Lysine/Au composite films were characterized by SEM, and the preparation process of OMC-Au/L-Lysine/Au modified glassy carbon electrode was investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic oxidation of hydroquinone and catechol on the modified electrode was discussed by differential pulse voltammetry in this study, and a sensor for separate determination of hydroquinone and catechol based on OMC-Au/L-Lysine/Au modified glassy carbon electrode was developed. Under the optimal conditions, the cathodic peak current was linearly related to hydroquinone concentration over ranges from 1.0 x 10(-6) mol x L(-1) to 8.0 x 10(-4) mol x L(-1) with a detection limit of 3.0 x 10(-7) mol x L(-1), and linearly related to catechol concentration from 1.0 x 10(-7) mol x L(-1) to 8.0 x 10(-5) mol x L(-1) with a detection limit of 8.0 x 10(-7) mol x L(-1).


Assuntos
Catecóis/análise , Eletrodos , Ouro/química , Hidroquinonas/análise , Lisina/química , Carbono/química , Técnicas Eletroquímicas , Desenho de Equipamento , Vidro/química , Nanopartículas Metálicas/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...