Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Med Chem ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981094

RESUMO

Targeted protein degradation (TPD), including the use of proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs) to degrade proteins, is an emerging strategy to develop novel therapies for cancer and beyond. PROTACs or MGDs function by inducing the proximity between an E3 ligase and a protein of interest (POI), leading to ubiquitination and consequent proteasomal degradation of the POI. Notably, one major issue in TPD is the lack of ligandable E3 ligases, as current studies predominantly use CUL4CRBN and CUL2VHL. The TPD community is seeking to expand the landscape of ligandable E3 ligases, but most discoveries rely on phenotypic screens or serendipity, necessitating systematic target deconvolution. Here, we examine and discuss both current and emerging E3 ligase deconvolution approaches for degraders discovered from phenotypic screens or monovalent glue chemistry campaigns, highlighting future prospects for identifying more ligandable E3 ligases.

2.
J Med Chem ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949959

RESUMO

HDAC8 plays crucial roles in biological processes, from gene regulation to cell motility, making it a highly desirable target for therapeutic intervention. HDAC8 also has deacetylase-independent activity which cannot be blocked by a conventional inhibitor. In this study, we report the discovery of YX862, a highly potent and selective hydrazide-based HDAC8-proteolysis targeting chimera (PROTAC) degrader. The selectivity is achieved through rational design of the warhead to spare HDAC3 activity from the previous HDAC3/8 dual degrader YX968. We demonstrate that the degradation of HDAC8 by YX862 increases acetylation levels of its nonhistone substrates such as SMC3 without significantly triggering histone PTM, supporting HDAC8's major role in nonhistone PTM regulation. YX862 exhibits promising on-target antiproliferative activity against DLBCL cells with higher potency than the HDAC8 selective inhibitor PCI-34051. As a selective HDAC8 degrader that avoids pan-HDAC inhibition, YX862 represents a valuable tool for exploring the biological and therapeutic potential of HDAC8.

3.
Chemistry ; : e202400430, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818652

RESUMO

BCL-2, a member of the BCL-2 protein family, is an antiapoptotic factor that regulates the intrinsic pathway of apoptosis. Due to its aberrant activity, it is frequently implicated in haematopoietic cancers and represents an attractive target for the development of therapeutics that antagonize its activity. A selective BCL-2 inhibitor, venetoclax, was approved for treating chronic lymphocytic leukaemia, acute myeloid leukemia, and other hematologic malignancies, validating BCL-2 as an anticancer target. Since then, alternative therapeutic approaches to modulate the activity of BCL-2 have been explored, such as antibody-drug conjugates and proteolysis-targeting chimeras. Despite numerous research groups focusing on developing degraders of BCL-2 family member proteins, selective BCL-2 PROTACs remain elusive, as disclosed compounds only show dual BCL-xL/BCL-2 degradation. Herein, we report our efforts to develop BCL-2 degraders by incorporating two BCL-2 binding moieties into chimeric compounds that aim to hijack one of three E3 ligases: CRBN, VHL, and IAPs. Even though our project did not result in obtaining a potent and selective BCL-2 PROTAC, our research will aid in understanding the narrow chemical space of BCL-2 degraders.

4.
Cells ; 13(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38534371

RESUMO

BCL-xL and BCL-2 are validated therapeutic targets in small-cell lung cancer (SCLC). Targeting these proteins with navitoclax (formerly ABT263, a dual BCL-xL/2 inhibitor) induces dose-limiting thrombocytopenia through on-target BCL-xL inhibition in platelets. Therefore, platelet toxicity poses a barrier in advancing the clinical translation of navitoclax. We have developed a strategy to selectively target BCL-xL in tumors, while sparing platelets, by utilizing proteolysis-targeting chimeras (PROTACs) that hijack the cellular ubiquitin proteasome system for target ubiquitination and subsequent degradation. In our previous study, the first-in-class BCL-xL PROTAC, called DT2216, was shown to have synergistic antitumor activities when combined with venetoclax (formerly ABT199, BCL-2-selective inhibitor) in a BCL-xL/2 co-dependent SCLC cell line, NCI-H146 (hereafter referred to as H146), in vitro and in a xenograft model. Guided by these findings, we evaluated our newly developed BCL-xL/2 dual degrader, called 753b, in three BCL-xL/2 co-dependent SCLC cell lines and the H146 xenograft models. 753b was found to degrade both BCL-xL and BCL-2 in these cell lines. Importantly, it was considerably more potent than DT2216, navitoclax, or DT2216 + venetoclax in reducing the viability of BCL-xL/2 co-dependent SCLC cell lines in cell culture. In vivo, 5 mg/kg weekly dosing of 753b was found to lead to significant tumor growth delay, similar to the DT2216 + venetoclax combination in H146 xenografts, by degrading both BCL-xL and BCL-2. Additionally, 753b administration at 5 mg/kg every four days induced tumor regressions. At this dosage, 753b was well tolerated in mice, without observable induction of severe thrombocytopenia as seen with navitoclax, and no evidence of significant changes in mouse body weights. These results suggest that the BCL-xL/2 dual degrader could be an effective and safe therapeutic for a subset of SCLC patients, warranting clinical trials in future.


Assuntos
Compostos de Anilina , Antineoplásicos , Compostos Bicíclicos Heterocíclicos com Pontes , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Sulfonamidas , Trombocitopenia , Humanos , Camundongos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Proteína bcl-X/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Antineoplásicos/farmacologia , Modelos Animais de Doenças
5.
Nat Commun ; 15(1): 2743, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38548768

RESUMO

Overexpression of BCL-xL and BCL-2 play key roles in tumorigenesis and cancer drug resistance. Advances in PROTAC technology facilitated recent development of the first BCL-xL/BCL-2 dual degrader, 753b, a VHL-based degrader with improved potency and reduced toxicity compared to previous small molecule inhibitors. Here, we determine crystal structures of VHL/753b/BCL-xL and VHL/753b/BCL-2 ternary complexes. The two ternary complexes exhibit markedly different architectures that are accompanied by distinct networks of interactions at the VHL/753b-linker/target interfaces. The importance of these interfacial contacts is validated via functional analysis and informed subsequent rational and structure-guided design focused on the 753b linker and BCL-2/BCL-xL warhead. This results in the design of a degrader, WH244, with enhanced potency to degrade BCL-xL/BCL-2 in cells. Using biophysical assays followed by in cell activities, we are able to explain the enhanced target degradation of BCL-xL/BCL-2 in cells. Most PROTACs are empirically designed and lack structural studies, making it challenging to understand their modes of action and specificity. Our work presents a streamlined approach that combines rational design and structure-based insights backed with cell-based studies to develop effective PROTAC-based cancer therapeutics.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteína bcl-X/metabolismo
6.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464204

RESUMO

BCL-xL and BCL-2 are validated therapeutic targets in small-cell lung cancer (SCLC). Targeting these proteins with navitoclax (formerly ABT263, a dual BCL-xL/2 inhibitor) induces dose-limiting thrombocytopenia through on-target BCL-xL inhibition in platelets. Therefore, platelet toxicity poses a barrier in advancing the clinical translation of navitoclax. We have developed a strategy to selectively target BCL-xL in tumors, while sparing platelets, by utilizing proteolysis-targeting chimeras (PROTACs) that hijack the cellular ubiquitin proteasome system for target ubiquitination and subsequent degradation. In our previous study, the first-in-class BCL-xL PROTAC, called DT2216, was shown to have synergistic antitumor activities when combined with venetoclax (formerly ABT199, BCL-2-selective inhibitor) in a BCL-xL/2 co-dependent SCLC cell line, NCI-H146 (hereafter referred to as H146), in vitro and in a xenograft model. Guided by these findings, we evaluated our newly developed BCL-xL/2 dual degrader, called 753b, in three BCL-xL/2 co-dependent SCLC cell lines and the H146 xenograft models. 753b was found to degrade both BCL-xL and BCL-2 in these cell lines. Importantly, it was considerably more potent than DT2216, navitoclax, or DT2216+venetoclax to reduce the viability of BCL-xL/2 co-dependent SCLC cell lines in cell culture. In vivo, 5 mg/kg weekly dosing of 753b leads to significant tumor growth delay similar to the DT2216+venetoclax combination in H146 xenografts by degrading both BCL-xL and BCL-2. Additionally, 753b administration at 5 mg/kg every four days induced tumor regressions. 753b at this dosage was well tolerated in mice without induction of severe thrombocytopenia as seen with navitoclax nor induced significant changes in mouse body weights. These results suggest that the BCL-xL/2 dual degrader could be an effective and safe therapeutic for a subset of SCLC patients warranting clinical trials in future.

7.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38334978

RESUMO

An effective cancer therapy requires killing cancer cells and targeting the tumor microenvironment (TME). Searching for molecules critical for multiple cell types in the TME, we identified NR4A1 as one such molecule that can maintain the immune suppressive TME. Here, we establish NR4A1 as a valid target for cancer immunotherapy and describe a first-of-its-kind proteolysis-targeting chimera (PROTAC, named NR-V04) against NR4A1. NR-V04 degrades NR4A1 within hours in vitro and exhibits long-lasting NR4A1 degradation in tumors with an excellent safety profile. NR-V04 inhibits and frequently eradicates established tumors. At the mechanistic level, NR-V04 induces the tumor-infiltrating (TI) B cells and effector memory CD8+ T (Tem) cells and reduces monocytic myeloid-derived suppressor cells (m-MDSC), all of which are known to be clinically relevant immune cell populations in human melanomas. Overall, NR-V04-mediated NR4A1 degradation holds promise for enhancing anticancer immune responses and offers a new avenue for treating various types of cancers such as melanoma.


Assuntos
Melanoma , Células Supressoras Mieloides , Humanos , Linhagem Celular Tumoral , Imunoterapia , Melanoma/patologia , Células Supressoras Mieloides/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Microambiente Tumoral , Quimera de Direcionamento de Proteólise
8.
Bioorg Med Chem Lett ; 98: 129593, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104906

RESUMO

Selective removal of senescent cells (SnCs) offers a promising therapeutic strategy to treat chronic and age-related diseases. Our prior investigations led to the discovery of piperlongumine (PL) and its derivatives as senolytic agents. In this study, our medicinal chemistry campaign on both the α,ß-unsaturated δ-valerolactam ring and the phenyl ring of PL culminated in the identification of compound 24, which exhibited an impressive 50-fold enhancement in senolytic activity against senescent WI-38 fibroblasts compared to PL.


Assuntos
Senescência Celular , Senoterapia
10.
BMC Pulm Med ; 23(1): 454, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990211

RESUMO

OBJECTIVE: To establish a preoperative model for the differential diagnosis of benign and malignant pulmonary nodules (PNs), and to evaluate the related factors of overdiagnosis of benign PNs at the time of imaging assessments. MATERIALS AND METHODS: In this retrospective study, 357 patients (median age, 52 years; interquartile range, 46-59 years) with 407 PNs were included, who underwent surgical histopathologic evaluation between January 2020 and December 2020. Patients were divided into a training set (n = 285) and a validation set (n = 122) to develop a preoperative model to identify benign PNs. CT scan features were reviewed by two chest radiologists, and imaging findings were categorized. The overdiagnosis rate of benign PNs was calculated, and bivariate and multivariable logistic regression analyses were used to evaluate factors associated with benign PNs that were over-diagnosed as malignant PNs. RESULTS: The preoperative model identified features such as the absence of part-solid and non-solid nodules, absence of spiculation, absence of vascular convergence, larger lesion size, and CYFRA21-1 positivity as features for identifying benign PNs on imaging, with a high area under the receiver operating characteristic curve of 0.88 in the validation set. The overdiagnosis rate of benign PNs was found to be 50%. Independent risk factors for overdiagnosis included diagnosis as non-solid nodules, pleural retraction, vascular convergence, and larger lesion size at imaging. CONCLUSION: We developed a preoperative model for identifying benign and malignant PNs and evaluating factors that led to the overdiagnosis of benign PNs. This preoperative model and result may help clinicians and imaging physicians reduce unnecessary surgery.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Sobrediagnóstico , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia
11.
bioRxiv ; 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37609171

RESUMO

An effective cancer therapy requires both killing cancer cells and targeting tumor-promoting pathways or cell populations within the tumor microenvironment (TME). We purposely search for molecules that are critical for multiple tumor-promoting cell types and identified nuclear receptor subfamily 4 group A member 1 (NR4A1) as one such molecule. NR4A1 has been shown to promote the aggressiveness of cancer cells and maintain the immune suppressive TME. Using genetic and pharmacological approaches, we establish NR4A1 as a valid therapeutic target for cancer therapy. Importantly, we have developed the first-of-its kind proteolysis-targeting chimera (PROTAC, named NR-V04) against NR4A1. NR-V04 effectively degrades NR4A1 within hours of treatment in vitro and sustains for at least 4 days in vivo, exhibiting long-lasting NR4A1-degradation in tumors and an excellent safety profile. NR-V04 leads to robust tumor inhibition and sometimes eradication of established melanoma tumors. At the mechanistic level, we have identified an unexpected novel mechanism via significant induction of tumor-infiltrating (TI) B cells as well as an inhibition of monocytic myeloid derived suppressor cells (m-MDSC), two clinically relevant immune cell populations in human melanomas. Overall, NR-V04-mediated NR4A1 degradation holds promise for enhancing anti-cancer immune responses and offers a new avenue for treating various types of cancer.

12.
Quant Imaging Med Surg ; 13(8): 4943-4959, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581048

RESUMO

Background: Positron emission tomography (PET) imaging is a promising molecular neuroimaging technique and has been proposed as one of the criteria for glioma management. However, there is some controversy concerning the diagnostic accuracy of PET using different radiotracers to differentiate between glioma pseudoprogression (PsP) and true progression (TPR). The purpose of this meta-analysis was to systematically evaluate the methodological quality and clinical value of original studies for distinguishing PsP from TPR in glioma. Methods: The Medline, Web of Science, Embase, Cochrane Library, and ClinicalTrials.gov were searched from inception until September 1, 2022. Retrieved clinical studies only investigated the PsP cases but did not include the cases of radiation necrosis or other treatment-related changes. Eligible studies were screened for data extraction and evaluated by 2 independent reviewers using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. A random effects model was used to describe summary receiver operating characteristics. Meta-regression and subgroup analyses were applied to identify any sources of heterogeneity. Results: The meta-analysis included 20 studies, comprising 317 (30.9%) patients with PsP and 708 (69.1%) with TPR. The summary sensitivity and specificity of general PET for identifying PsP were 0.86 [95% confidence interval (CI): 0.77-0.91] and 0.84 (95% CI: 0.79-0.88), respectively. The statistical heterogeneity was explained by sample size, study design, World Health Organization (WHO) grade, gold standard, and radiotracer type. The summary sensitivity and specificity of O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET PET) were 0.80 (95% CI: 0.68-0.88) and 0.81 (95% CI: 0.75-0.85), respectively. The maximum tumor-to-brain ratio (TBRmax) and the mean tumor-to-brain ratio (TBRmean) both showed excellent diagnostic performance in 18F-FET studies, the summary sensitivity was 0.83 (95% CI: 0.72-0.91) and 0.79 (95% CI: 0.65-0.98), respectively, and the specificity was 0.76 (95% CI: 0.68-0.84) and 0.78 (95% CI: 0.64-0.88), respectively. Conclusions: PET imaging is generally accurate in identifying glioma PsP. Considering the credibility of meta-evidence and the practicability of using radiotracer, 18F-FET PET holds the highest clinical value, while TBRmax and TBRmean should be regarded as reliable parameters. PET used with the radiotracers and multiple-parameter combinations of PET with magnetic resonance imaging (MRI) and radiomics analysis have broad research and application prospects, whose diagnostic values for identifying glioma PsP warrant further investigation.

13.
Cell Chem Biol ; 30(11): 1421-1435.e12, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37572669

RESUMO

HDAC3 and HDAC8 have critical biological functions and represent highly sought-after therapeutic targets. Because histone deacetylases (HDACs) have a very conserved catalytic domain, developing isozyme-selective inhibitors remains challenging. HDAC3/8 also have deacetylase-independent activity, which cannot be blocked by conventional enzymatic inhibitors. Proteolysis-targeting chimeras (PROTACs) can selectively degrade a target enzyme, abolishing both enzymatic and scaffolding function. Here, we report a novel HDAC3/8 dual degrader YX968 that induces highly potent, rapid, and selective degradation of both HDAC3/8 without triggering pan-HDAC inhibitory effects. Unbiased quantitative proteomic experiments confirmed its high selectivity. HDAC3/8 degradation by YX968 does not induce histone hyperacetylation and broad transcriptomic perturbation. Thus, histone hyperacetylation may be a major factor for altering transcription. YX968 promotes apoptosis and kills cancer cells with a high potency in vitro. YX968 thus represents a new probe for dissecting the complex biological functions of HDAC3/8.


Assuntos
Inibidores de Histona Desacetilases , Histonas , Histonas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Acetilação , Proteômica , Processamento de Proteína Pós-Traducional
14.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569866

RESUMO

Biomechanical forces are of fundamental importance in biology, diseases, and medicine. Mechanobiology is an emerging interdisciplinary field that studies how biological mechanisms are regulated by biomechanical forces and how physical principles can be leveraged to innovate new therapeutic strategies. This article reviews state-of-the-art mechanobiology knowledge about the yes-associated protein (YAP), a key mechanosensitive protein, and its roles in the development of drug resistance in human cancer. Specifically, the article discusses three topics: how YAP is mechanically regulated in living cells; the molecular mechanobiology mechanisms by which YAP, along with other functional pathways, influences drug resistance of cancer cells (particularly lung cancer cells); and finally, how the mechanical regulation of YAP can influence drug resistance and vice versa. By integrating these topics, we present a unified framework that has the potential to bring theoretical insights into the design of novel mechanomedicines and advance next-generation cancer therapies to suppress tumor progression and metastasis.


Assuntos
Neoplasias Pulmonares , Fatores de Transcrição , Humanos , Fenômenos Biomecânicos , Fatores de Transcrição/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Resistencia a Medicamentos Antineoplásicos
15.
Redox Rep ; 28(1): 2251237, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37652897

RESUMO

OBJECTIVE: It is very important to develop a new therapeutic strategy to cope with the increasing morbidity and mortality of chronic kidney disease (CKD). As a kind of physical therapy, low intensity pulsed ultrasound (LIPUS) has remarkable anti-inflammatory and repair-promoting effects and is expected to become a new therapeutic method for CKD. This study aims to clarify the treatment effect of LIPUS on CKD-related renal inflammation and fibrosis, and to further explore the potential signal network of LIPUS treatment for ameliorating chronic renal injury. METHODS: A rat model simulating the progress of CKD was established by twice tail-vein injection of Adriamycin (ADR). Under anesthesia, bilateral kidneys of CKD rats were continuously stimulated by LIPUS for four weeks. The parameters of LIPUS were 1.0 MHz, 60 mW/cm2, 50% duty cycle and 20 min/d. RESULTS: LIPUS treatment effectively inhibited ADR-induced renal inflammation and fibrosis, and improved CKD-related to oxidative stress and ferroptosis. In addition, the therapeutic effect of LIPUS is closely related to the regulation of TGF-ß1/Smad and Nrf2/keap1/HO-1 signalling pathways. DISCUSSION: This study provides a new direction for further mechanism research and lays an important foundation for clinical trials.


Assuntos
Ferroptose , Insuficiência Renal Crônica , Animais , Ratos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Rim , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/terapia , Doxorrubicina/toxicidade , Inflamação
16.
Front Pediatr ; 11: 1183345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435167

RESUMO

Persistent fifth aortic arch (PFAA) is an extremely rare congenital cardiovascular anomaly resulting from the failure of the fifth aortic arch to degenerate during embryonic development; it is often associated with various other cardiovascular anomalies. Despite being first reported by Van Praagh in 1969, there have been only a few individual case reports. Owing to its rarity and lack of comprehensive understanding, PFAA is often misdiagnosed or missed diagnosed during clinical. Thus, this review aimed to summarise the embryonic development, pathological classification, imaging diagnosis, and clinical treatment of PFAA to improve its overall understanding, ultimately helping in accurate diagnosis and treatment.

17.
Oncogene ; 42(20): 1672-1684, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020040

RESUMO

Ovarian cancer is the leading cause of death among gynecological malignancies. Checkpoint blockade immunotherapy has so far only shown modest efficacy in ovarian cancer and platinum-based chemotherapy remains the front-line treatment. Development of platinum resistance is one of the most important factors contributing to ovarian cancer recurrence and mortality. Through kinome-wide synthetic lethal RNAi screening combined with unbiased datamining of cell line platinum response in CCLE and GDSC databases, here we report that Src-Related Kinase Lacking C-Terminal Regulatory Tyrosine And N-Terminal Myristylation Sites (SRMS), a non-receptor tyrosine kinase, is a novel negative regulator of MKK4-JNK signaling under platinum treatment and plays an important role in dictating platinum efficacy in ovarian cancer. Suppressing SRMS specifically sensitizes p53-deficient ovarian cancer cells to platinum in vitro and in vivo. Mechanistically, SRMS serves as a "sensor" for platinum-induced ROS. Platinum treatment-induced ROS activates SRMS, which inhibits MKK4 kinase activity by directly phosphorylating MKK4 at Y269 and Y307, and consequently attenuates MKK4-JNK activation. Suppressing SRMS leads to enhanced MKK4-JNK-mediated apoptosis by inhibiting MCL1 transcription, thereby boosting platinum efficacy. Importantly, through a "drug repurposing" strategy, we uncovered that PLX4720, a small molecular selective inhibitor of B-RafV600E, is a novel SRMS inhibitor that can potently boost platinum efficacy in ovarian cancer in vitro and in vivo. Therefore, targeting SRMS with PLX4720 holds the promise to improve the efficacy of platinum-based chemotherapy and overcome chemoresistance in ovarian cancer.


Assuntos
Neoplasias Ovarianas , Platina , Humanos , Feminino , Espécies Reativas de Oxigênio , Platina/farmacologia , Platina/uso terapêutico , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Quinases da Família src/metabolismo , Resistencia a Medicamentos Antineoplásicos
18.
Haematologica ; 108(10): 2626-2638, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078252

RESUMO

BCL-XL and BCL-2 are key anti-apoptotic proteins and validated cancer targets. 753B is a novel BCL-XL/BCL-2 proteolysis targeting chimera (PROTAC) that targets both BCL-XL and BCL-2 to the von Hippel-Lindau (VHL) E3 ligase, leading to BCLX L/BCL-2 ubiquitination and degradation selectively in cells expressing VHL. Because platelets lack VHL expression, 753B spares on-target platelet toxicity caused by the first-generation dual BCL-XL/BCL-2 inhibitor navitoclax (ABT-263). Here, we report pre-clinical single-agent activity of 753B against different leukemia subsets. 753B effectively reduced cell viability and induced dose-dependent degradation of BCL-XL and BCL-2 in a subset of hematopoietic cell lines, acute myeloid leukemia (AML) primary samples, and in vivo patient-derived xenograft AML models. We further demonstrated the senolytic activity of 753B, which enhanced the efficacy of chemotherapy by targeting chemotherapy-induced cellular senescence. These results provide a pre-clinical rationale for the utility of 753B in AML therapy, and suggest that 753B could produce an added therapeutic benefit by overcoming cellular senescence-induced chemoresistance when combined with chemotherapy.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Proteína bcl-X/genética , Proteínas Proto-Oncogênicas c-bcl-2 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Senescência Celular , Linhagem Celular Tumoral , Apoptose
19.
Cell Chem Biol ; 30(2): 203-213.e17, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36750097

RESUMO

Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that degrade target proteins through recruiting E3 ligases. However, their application is limited in part because few E3 ligases can be recruited by known E3 ligase ligands. In this study, we identified piperlongumine (PL), a natural product, as a covalent E3 ligase recruiter, which induces CDK9 degradation when it is conjugated with SNS-032, a CDK9 inhibitor. The lead conjugate 955 can potently degrade CDK9 in a ubiquitin-proteasome-dependent manner and is much more potent than SNS-032 against various tumor cells in vitro. Mechanistically, we identified KEAP1 as the E3 ligase recruited by 955 to degrade CDK9 through a TurboID-based proteomics study, which was further confirmed by KEAP1 knockout and the nanoBRET ternary complex formation assay. In addition, PL-ceritinib conjugate can degrade EML4-ALK fusion oncoprotein, suggesting that PL may have a broader application as a covalent E3 ligase ligand in targeted protein degradation.


Assuntos
Fator 2 Relacionado a NF-E2 , Ubiquitina-Proteína Ligases , Proteólise , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ligantes
20.
Cell Death Discov ; 9(1): 1, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588105

RESUMO

Small-cell lung cancer (SCLC) is an aggressive malignancy with limited therapeutic options. The dismal prognosis in SCLC is in part associated with an upregulation of BCL-2 family anti-apoptotic proteins, including BCL-XL and MCL-1. Unfortunately, the currently available inhibitors of BCL-2 family anti-apoptotic proteins, except BCL-2 inhibitors, are not clinically relevant because of various on-target toxicities. We, therefore, aimed to develop an effective and safe strategy targeting these anti-apoptotic proteins with DT2216 (our platelet-sparing BCL-XL degrader) and AZD8055 (an mTOR inhibitor) to avoid associated on-target toxicities while synergistically optimizing tumor response. Through BH3 mimetic screening, we identified a subset of SCLC cell lines that is co-dependent on BCL-XL and MCL-1. After screening inhibitors of selected tumorigenic pathways, we found that AZD8055 selectively downregulates MCL-1 in SCLC cells and its combination with DT2216 synergistically killed BCL-XL/MCL-1 co-dependent SCLC cells, but not normal cells. Mechanistically, the combination caused BCL-XL degradation and suppression of MCL-1 expression, and thus disrupted MCL-1 interaction with BIM leading to an enhanced apoptotic induction. In vivo, the DT2216 + AZD8055 combination significantly inhibited the growth of cell line-derived and patient-derived xenografts and reduced tumor burden accompanied by increased survival in a genetically engineered mouse model of SCLC without causing appreciable thrombocytopenia or other normal tissue injuries. Thus, these preclinical findings lay a strong foundation for future clinical studies to test DT2216 + mTOR inhibitor combinations in a subset of SCLC patients whose tumors are co-driven by BCL-XL and MCL-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...