Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(13): 18778-18792, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34699006

RESUMO

Chromium accumulated from source water and pipeline lining materials in corrosion scales could potentially be released into bulk water in drinking water distribution systems (DWDS). This study examined the influence of pH (pH 4, pH 5.5, pH 7, pH 8.5, pH 10), temperature (5 °C, 15 °C, 25 °C), sulfate (50 mg/L, 150 mg/L, 250 mg/L), and chloride (50 mg/L, 150 mg/L, 250 mg/L) on chromium accumulation and release between iron corrosion scale phase and the surrounding water phase. For the first time, the accumulation and release behaviors of chromium were assessed and compared in two distinct layers of iron corrosion scales based on the speciation distributions of heavy metals. Results showed that in the outer and inner layers of corrosion scales, chromium exhibited an almost similar trend but significant differences in quantity, with the outer layer accumulating less and releasing more. In particular, the average difference of chromium released after Cr(VI) enrichment from the outer and inner layers was 50.53 µg/L under the same conditions. Further studies conclusively showed that in Cr(VI) accumulation process, a portion of Cr(VI) would be reduced to Cr(III) by Fe(II) in iron corrosion scales. The mechanisms of chromium retention based on different iron (oxyhydr)oxides were discussed.


Assuntos
Água Potável , Poluentes Químicos da Água , Cloretos , Cromo , Corrosão , Concentração de Íons de Hidrogênio , Ferro , Sulfatos , Temperatura , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 424(Pt A): 127324, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879551

RESUMO

Microbial corrosion and heavy metal accumulation in metal water supply pipelines aggravate scale formation and may result in pipeline leakage or bursting events. To better understand the corrosion and corrosion products in the damaged pipes, deposits excavated from three damaged pipes after 22-26 year service periods were analyzed. Using a combination of advanced micro-mineral techniques and 16S rRNA high-throughput sequencing, the micromorphology, chemical composition, and bacterial community were investigated systematically. Unlined pipe wall scales ruptured while lined pipes leaked due to joint scales. Dendrogram correlation results demonstrated that V/As, Al/Pb, and Cr/Mn clusters exhibited co-adsorption and co-precipitation characteristics. FTIR and XRD analysis detected the presence of γ-FeOOH, α-FeOOH in loose scales, and Fe3O4 in rigid scales. Scales were colonized by various corrosion bacteria, with sulfate reducing bacteria and ammonia producing bacteria being dominant in the scales of anticorrosive and non-corrosive pipe, respectively. Tl, Ca, Al, and Pb exhibited an extremely positive correlation with Rhodocyclaceae, Ferritrophicum, Thermodesulfovibrionia, and Clostridiaceae. Al and V presented a potential Hazard Quotient risk to consumers, while Cd was potentially bioavailable in all inner scales. Overall, this study provides valuable information for the effective management and avoidance of corrosion-induced pipeline damage and heavy metal release.


Assuntos
Água Potável , Metais Pesados , Corrosão , Metais Pesados/análise , RNA Ribossômico 16S/genética , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...