Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Gastroenterol ; 30(18): 2454-2466, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764769

RESUMO

BACKGROUND: Drug-induced liver injury (DILI) is one of the most common adverse events of medication use, and its incidence is increasing. However, early detection of DILI is a crucial challenge due to a lack of biomarkers and noninvasive tests. AIM: To identify salivary metabolic biomarkers of DILI for the future development of noninvasive diagnostic tools. METHODS: Saliva samples from 31 DILI patients and 35 healthy controls (HCs) were subjected to untargeted metabolomics using ultrahigh-pressure liquid chromatography coupled with tandem mass spectrometry. Subsequent analyses, including partial least squares-discriminant analysis modeling, t tests and weighted metabolite coexpression network analysis (WMCNA), were conducted to identify key differentially expressed metabolites (DEMs) and metabolite sets. Furthermore, we utilized least absolute shrinkage and selection operato and random fores analyses for biomarker prediction. The use of each metabolite and metabolite set to detect DILI was evaluated with area under the receiver operating characteristic curves. RESULTS: We found 247 differentially expressed salivary metabolites between the DILI group and the HC group. Using WMCNA, we identified a set of 8 DEMs closely related to liver injury for further prediction testing. Interestingly, the distinct separation of DILI patients and HCs was achieved with five metabolites, namely, 12-hydroxydodecanoic acid, 3-hydroxydecanoic acid, tetradecanedioic acid, hypoxanthine, and inosine (area under the curve: 0.733-1). CONCLUSION: Salivary metabolomics revealed previously unreported metabolic alterations and diagnostic biomarkers in the saliva of DILI patients. Our study may provide a potentially feasible and noninvasive diagnostic method for DILI, but further validation is needed.


Assuntos
Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas , Metabolômica , Saliva , Humanos , Biomarcadores/análise , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Saliva/química , Saliva/metabolismo , Masculino , Feminino , Metabolômica/métodos , Pessoa de Meia-Idade , Adulto , Estudos de Casos e Controles , Espectrometria de Massas em Tandem/métodos , Curva ROC , Idoso , Cromatografia Líquida de Alta Pressão , Diagnóstico Precoce
2.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2739-2748, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282934

RESUMO

Ulcerative colitis(UC) is a recurrent, intractable inflammatory bowel disease. Coptidis Rhizoma and Bovis Calculus, serving as heat-clearing and toxin-removing drugs, have long been used in the treatment of UC. Berberine(BBR) and ursodeoxycholic acid(UDCA), the main active components of Coptidis Rhizoma and Bovis Calculus, respectively, were employed to obtain UDCA-BBR supramolecular nanoparticles by stimulated co-decocting process for enhancing the therapeutic effect on UC. As revealed by the characterization of supramolecular nanoparticles by field emission scanning electron microscopy(FE-SEM) and dynamic light scattering(DLS), the supramolecular nanoparticles were tetrahedral nanoparticles with an average particle size of 180 nm. The molecular structure was described by ultraviolet spectroscopy, fluorescence spectroscopy, infrared spectroscopy, high-resolution mass spectrometry, and hydrogen-nuclear magnetic resonance(H-NMR) spectroscopy. The results showed that the formation of the supramolecular nano-particle was attributed to the mutual electrostatic attraction and hydrophobic interaction between BBR and UDCA. Additionally, supramolecular nanoparticles were also characterized by sustained release and pH sensitivity. The acute UC model was induced by dextran sulfate sodium(DSS) in mice. It was found that supramolecular nanoparticles could effectively improve body mass reduction and colon shortening in mice with UC(P<0.001) and decrease disease activity index(DAI)(P<0.01). There were statistically significant differences between the supramolecular nanoparticles group and the mechanical mixture group(P<0.001, P<0.05). Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum levels of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6), and the results showed that supramolecular nanoparticles could reduce serum TNF-α and IL-6 levels(P<0.001) and exhibited an obvious difference with the mechanical mixture group(P<0.01, P<0.05). Flow cytometry indicated that supramolecular nanoparticles could reduce the recruitment of neutrophils in the lamina propria of the colon(P<0.05), which was significantly different from the mechanical mixture group(P<0.05). These findings suggested that as compared with the mechanical mixture, the supramolecular nanoparticles could effectively improve the symptoms of acute UC in mice. The study provides a new research idea for the poor absorption of small molecules and the unsatisfactory therapeutic effect of traditional Chinese medicine and lays a foundation for the research on the nano-drug delivery system of traditional Chinese medicine.


Assuntos
Berberina , Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Nanopartículas , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Ácido Ursodesoxicólico/efeitos adversos , Berberina/farmacologia , Interleucina-6 , Fator de Necrose Tumoral alfa/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Colo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Colite/induzido quimicamente
3.
J Integr Med ; 19(2): 158-166, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33308987

RESUMO

OBJECTIVE: This study tests whether long-term intake of Allium tuberosum (AT) can alleviate pulmonary inflammation in ovalbumin (OVA)-induced asthmatic mice and evaluates its effect on the intestinal microbiota and innate lymphoid cells (ILCs). METHODS: BALB/c mice were divided into three groups: phosphate buffer saline, OVA and OVA + AT. The asthmatic murine model was established by sensitization and challenge of OVA in the OVA and OVA + AT groups. AT was given to the OVA + AT group by oral gavage from day 0 to day 27. On day 28, mice were sacrificed. Histopathological evaluation of lung tissue was performed using hematoxylin and eosin, and periodic acid-Schiff staining. The levels of IgE in serum, interleukin-5 (IL-5) and IL-13 from bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay. The ILCs from the lung and gut were detected by flow cytometry. 16S ribosomal DNA sequencing was used to analyze the differences in colon microbiota among treatment groups. RESULTS: We found that long-term intake of AT decreased the number of inflammatory cells from BALF, reduced the levels of IL-5 and IL-13 in BALF, and IgE level in serum, and rescued pulmonary histopathology with less mucus secretion in asthmatic mice. 16S ribosomal DNA sequencing results showed that AT strongly affected the colonic bacteria community structure in asthmatic mice, although it had no significant effect on the abundance and diversity of the microbiota. Ruminococcaceae and Desulfovibrionaceae were identified as two biomarkers of the treatment effect of AT. Moreover, AT decreased the numbers of ILCs in both the lung and gut of asthmatic mice. CONCLUSION: The results indicate that AT inhibits pulmonary inflammation, possibly by impeding the activation of ILCs and adjusting the homeostasis of gut microbiota in asthmatic mice.


Assuntos
Cebolinha-Francesa , Microbioma Gastrointestinal , Pneumonia , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Imunidade Inata , Inflamação/tratamento farmacológico , Pulmão , Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/tratamento farmacológico
4.
J Asthma Allergy ; 13: 509-520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116659

RESUMO

OBJECTIVE: In China, lamb and fish are well-known triggers for an asthma attack. Our investigation aims at assessing whether the long-term intake of lamb meat or Basa fish would aggravate pulmonary inflammation as well as exploring changes in the intestinal microbiota and immune cells in asthmatic mice. MATERIALS AND METHODS: The murine asthmatic model was established by intraperitoneal injection of ovalbumin (OVA) plus aluminum on day 0 and 14 and nebulization of OVA from day 21 to 27. Lamb meat or fish was administered to asthmatic mice by oral gavage from day 0 to 27. RESULTS: Our results showed that long-term consumption of lamb meat or Basa fish in asthmatic mice increased the number of inflammatory cells in bronchoalveolar lavage fluid (BALF), enhanced levels of IL-5, IL-13 in BALF and total IgE in serum, aggravated pulmonary inflammatory cell infiltration and mucus secretion. Long-term oral lamb enhanced the proportion of type 2 innate lymphoid cells (ILC2) from small intestine while it inhibited that of Treg from lung in asthmatic mice. Oral fish showed no remarkable effect on that of ILC2 from lung and small intestine but inhibited that of intestinal Treg in asthmatic mice. What's more, the chao-1 and observed species richness as well as PD whole tree diversity increased in asthmatic mice while these increments were inhibited after lamb treatment. PCA analysis indicated that there were significant differences in the bacterial community composition after lamb or fish treatment in asthmatic mice. Both lamb and fish treatment enhanced the abundance of colonic Alistipes in asthmatic mice. CONCLUSION: Collectively, long-term intake of lamb or fish shapes colonic bacterial communities and aggravates pulmonary inflammation in asthmatic mice, which provides reasonable food guidance for asthmatic patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...