Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(37): 11654-11660, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39225662

RESUMO

Gap surface plasmon (GSP) modes enhance graphene photodetectors (GPDs)' performance by confining the incident light within nanogaps, giving rise to strong light absorption. Here, we propose an asymmetric plasmonic nanostructure array on planar graphene comprising stripe- and triangle-shaped sharp tip arrays. Upon light excitation, the noncentrosymmetric metallic nanostructures show strong light-matter interactions with localized field close to the surface of tips, causing an asymmetric electric field. These features can accelerate the hot electron generation in graphene, forming a directional diffusion current. Accordingly, the artificial GPDs exhibit a wavelength-dependence behavior covering the wavelength range from 0.8 to 1.6 µm, with three photoresponse maxima corresponding to the nanostructures' resonances. Additionally, the polarization-dependent GPDs can realize a responsivity of ∼25 mA/W and a noise equivalent power of ∼0.44 nW/Hz1/2 at zero bias when excited at the resonance of 1.4 µm. Overall, our study offers a new strategy for preparing compact and multifrequency infrared GPDs.

2.
ACS Appl Mater Interfaces ; 12(42): 47729-47738, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967418

RESUMO

It has long been a challenge to develop strain sensors with large gauge factor (GF) and high transparency for a broad strain range, to which field silver nanowires (AgNWs) have recently been applied. A dense nanowire (NW) network benefits achieving large stretchability, while a sparse NW network favors realizing high transparency and sensitive response to small strains. Herein, a patterned AgNW-acrylate composite-based strain sensor is developed to circumvent the above trade-off issue via a novel ultrasonication-based patterning technique, where a water-soluble, UV-curable acrylate composite was blended with AgNWs as both a tackifier and a photoresist for finely patterning dense AgNWs to achieve high transparency, while maintaining good stretchability. Moreover, the UV-cured AgNW-acrylate patterns are brittle and capable of forming parallel cracks which effectively evade the Poisson effect and thus increase the GF by more than 200-fold compared to that of the bulk AgNW film-based strain sensor. As a result, the AgNW-based strain sensor possesses a GF of ∼10,486 at a large strain (8%), a high transparency of 90.3%, and a maximum stretchability of 20% strain. The precise monitoring of human radial pulse and throat movements proves the great potential of this sensor as a measurement module for wearable healthcare systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA