Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3465, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308496

RESUMO

Scalable programmable photonic integrated circuits (PICs) can potentially transform the current state of classical and quantum optical information processing. However, traditional means of programming, including thermo-optic, free carrier dispersion, and Pockels effect result in either large device footprints or high static energy consumptions, significantly limiting their scalability. While chalcogenide-based non-volatile phase-change materials (PCMs) could mitigate these problems thanks to their strong index modulation and zero static power consumption, they often suffer from large absorptive loss, low cyclability, and lack of multilevel operation. Here, we report a wide-bandgap PCM antimony sulfide (Sb2S3)-clad silicon photonic platform simultaneously achieving low loss (<1.0 dB), high extinction ratio (>10 dB), high cyclability (>1600 switching events), and 5-bit operation. These Sb2S3-based devices are programmed via on-chip silicon PIN diode heaters within sub-ms timescale, with a programming energy density of [Formula: see text]. Remarkably, Sb2S3 is programmed into fine intermediate states by applying multiple identical pulses, providing controllable multilevel operations. Through dynamic pulse control, we achieve 5-bit (32 levels) operations, rendering 0.50 ± 0.16 dB per step. Using this multilevel behavior, we further trim random phase error in a balanced Mach-Zehnder interferometer.

2.
Opt Express ; 31(6): 10684-10693, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157610

RESUMO

We propose and simulate a compact (∼29.5 µm-long) nonvolatile polarization switch based on an asymmetric Sb2Se3-clad silicon photonic waveguide. The polarization state is switched between TM0 and TE0 mode by modifying the phase of nonvolatile Sb2Se3 between amorphous and crystalline. When the Sb2Se3 is amorphous, two-mode interference happens in the polarization-rotation section resulting in efficient TE0-TM0 conversion. On the other hand, when the material is in the crystalline state, there is little polarization conversion because the interference between the two hybridized modes is significantly suppressed, and both TE0 and TM0 modes go through the device without any change. The designed polarization switch has a high polarization extinction ratio of > 20 dB and an ultra-low excess loss of < 0.22 dB in the wavelength range of 1520-1585 nm for both TE0 and TM0 modes.

3.
Nat Nanotechnol ; 17(8): 842-848, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35788188

RESUMO

Silicon photonics is evolving from laboratory research to real-world applications with the potential to transform many technologies, including optical neural networks and quantum information processing. A key element for these applications is a reconfigurable switch operating at ultra-low programming energy-a challenging proposition for traditional thermo-optic or free carrier switches. Recent advances in non-volatile programmable silicon photonics based on phase-change materials (PCMs) provide an attractive solution to energy-efficient photonic switches with zero static power, but the programming energy density remains high (hundreds of attojoules per cubic nanometre). Here we demonstrate a non-volatile electrically reconfigurable silicon photonic platform leveraging a monolayer graphene heater with high energy efficiency and endurance. In particular, we show a broadband switch based on the technologically mature PCM Ge2Sb2Te5 and a phase shifter employing the emerging low-loss PCM Sb2Se3. The graphene-assisted photonic switches exhibited an endurance of over 1,000 cycles and a programming energy density of 8.7 ± 1.4 aJ nm-3, that is, within an order of magnitude of the PCM thermodynamic switching energy limit (~1.2 aJ nm-3) and at least a 20-fold reduction in switching energy compared with the state of the art. Our work shows that graphene is a reliable and energy-efficient heater compatible with dielectric platforms, including Si3N4, for technologically relevant non-volatile programmable silicon photonics.

4.
Opt Express ; 29(21): 33225-33233, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809138

RESUMO

We demonstrate high quality (Q) factor microring resonators in high index-contrast GeSbSe chalcogenide glass waveguides using electron-beam lithography followed by plasma dry etching. A microring resonator with a radius of 90 µm shows an intrinsic Q factor of 4.1 × 105 in the telecom band. Thanks to the submicron waveguide dimension, the effective nonlinear coefficient was determined to be up to ∼110 W-1m-1 at 1550 nm, yielding a larger figure-of-merit compared with previously reported submicron chalcogenide waveguides. Such a high Q factor, combined with the large nonlinear coefficient and high confinement, shows the great potential of the GeSbSe microring resonator as a competitive platform in integrated nonlinear photonics.

5.
Opt Express ; 29(12): 17775-17783, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154053

RESUMO

We demonstrate the high quality (Q) factor microdisk resonators in high index-contrast chalcogenide glass (ChG) film GeSbSe using electron-beam lithography followed by plasma dry etching. High confinement, low-loss, and single-point-coupled microdisk resonators with a loaded Q factor of 5×105 are measured. We also present pulley-coupled microdisk resonators for relaxing the requirements on the coupling gap. While adjusting the wrap-around coupling waveguides to be phase-matched to the resonator mode, a single specific microdisk radial mode can be excited. Moreover, the thermal characterization of microdisk resonators is carried out to estimate the thermo-optic coefficient of 6.7×10-5/K for bulk ChG.

6.
Opt Express ; 28(25): 37265-37275, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379564

RESUMO

We propose a nanogap-enhanced phase-change waveguide with silicon PIN heaters. Thanks to the enhanced light-matter interaction in the nanogap, the proposed structure exhibits strong attenuation (Δα = ∼35 dB/µm) and optical phase (Δneff = ∼1.2) modulation at λ = 1550 nm when achieving complete phase transitions. We further investigate two active optical devices based on the proposed waveguide, including an electro-absorption modulator and a 1 × 2 directional-coupler optical switch. Finite-difference time-domain simulation of the proposed modulator shows a high extinction ratio of ∼17 dB at 1550 nm with an active segment of volume only ∼0.004λ3. By exploiting a directional coupler design, we present a 1 × 2 optical switch with an insertion loss of < 4 dB and a compact coupling length of ∼ 15 µm while maintaining small crosstalk less than -7.2 dB over an optical bandwidth of 50 nm. Thermal analysis shows that a 10 V pulse of 30 ns (1×1 modulator) and 55 ns (1×2 switch) in duration is required to raise the GST temperature of the phase-change waveguide above the melting temperature to induce the amorphization; however, the complete crystallization occurs by applying a 5 V pulse of 180 ns (1×1 modulator) and a 6 V pulse of 200 ns (1×2 switch), respectively.

7.
Adv Mater ; 32(31): e2001218, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32588481

RESUMO

Reconfigurability of photonic integrated circuits (PICs) has become increasingly important due to the growing demands for electronic-photonic systems on a chip driven by emerging applications, including neuromorphic computing, quantum information, and microwave photonics. Success in these fields usually requires highly scalable photonic switching units as essential building blocks. Current photonic switches, however, mainly rely on materials with weak, volatile thermo-optic or electro-optic modulation effects, resulting in large footprints and high energy consumption. As a promising alternative, chalcogenide phase-change materials (PCMs) exhibit strong optical modulation in a static, self-holding fashion, but the scalability of present PCM-integrated photonic applications is still limited by the poor optical or electrical actuation approaches. Here, with phase transitions actuated by in situ silicon PIN diode heaters, scalable nonvolatile electrically reconfigurable photonic switches using PCM-clad silicon waveguides and microring resonators are demonstrated. As a result, intrinsically compact and energy-efficient switching units operated with low driving voltages, near-zero additional loss, and reversible switching with high endurance are obtained in a complementary metal-oxide-semiconductor (CMOS)-compatible process. This work can potentially enable very large-scale CMOS-integrated programmable electronic-photonic systems such as optical neural networks and general-purpose integrated photonic processors.

8.
ACS Appl Mater Interfaces ; 12(19): 21827-21836, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32297737

RESUMO

Progress in integrated nanophotonics has enabled large-scale programmable photonic integrated circuits (PICs) for general-purpose electronic-photonic systems on a chip. Relying on the weak, volatile thermo-optic, or electro-optic effects, such systems usually exhibit limited reconfigurability along with high-energy consumption and large footprints. These challenges can be addressed by resorting to chalcogenide phase-change materials (PCMs) such as Ge2Sb2Te5 (GST) that provide a substantial optical contrast in a self-holding fashion upon phase transitions. However, current PCM-based integrated photonic applications are limited to single devices or simple PICs because of the poor scalability of the optical or electrical self-heating actuation approaches. Thermal-conduction heating via external electrical heaters, instead, allows large-scale integration and large-area switching, but fast and energy-efficient electrical control is yet to be achieved. Here, we model electrical switching of GST-clad-integrated nanophotonic structures with graphene heaters based on the programmable GST-on-silicon platform. Thanks to the ultra-low heat capacity and high in-plane thermal conductivity of graphene, the proposed structures exhibit a high switching speed of ∼80 MHz and a high energy efficiency of 19.2 aJ/nm3 (6.6 aJ/nm3) for crystallization (amorphization) while achieving complete phase transitions to ensure strong attenuation (∼6.46 dB/µm) and optical phase (∼0.28 π/µm at 1550 nm) modulation. Compared with indium tin oxide and silicon p-i-n heaters, the structures with graphene heaters display two orders of magnitude higher figure of merits for heating and overall performance. Our work facilitates the analysis and understanding of the thermal-conduction heating-enabled phase transitions on PICs and supports the development of future large-scale PCM-based electronic-photonic systems.

9.
Opt Express ; 27(21): 30692-30699, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684313

RESUMO

We design and fabricate an on-substrate bowtie photonic crystal (PhC) cavity in silicon. By optimizing the bowtie shapes in the unit cells of the PhC cavity, the maximum of the electric field can be highly confined in the bowtie tips. Due to such confinement, an ultra-low mode volume of ∼0.1(λ/nSi)3 is achieved, which is more than an order of magnitude smaller than the previous on-substrate nanobeam cavities. An ultra-high quality (Q) factor as large as 106 is predicted by simulation, and up to 1.4×104 is measured in experiment. The observation of pronounced thermo-optic bistability is consistent with the strong confinement of light in the cavities.

10.
Opt Lett ; 44(12): 3058-3061, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199380

RESUMO

Tunable silicon nitride nanophotonic resonators are a critical building block for integrated photonic systems in the visible wavelength range. We experimentally demonstrate a thermally tunable polymer-embedded silicon nitride nanobeam cavity with a tuning efficiency of 44 pm/°C and 0.13 nm/mW in the near-visible wavelength range. The large tuning efficiency comes from the high thermo-optic coefficient of the SU-8 polymer and the "air-mode" cavity design, where a large portion of the cavity field is confined inside the polymer region. The demonstrated resonator will enable locally tunable cavity quantum electrodynamic experiments in the silicon nitride platform.

11.
Opt Express ; 27(3): 3609-3616, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732377

RESUMO

We present the design, fabrication, and characterization of a multi-slot photonic crystal (PhC) cavity sensor on the silicon-on-insulator platform. By optimizing the structure of the PhC cavity, most of the light can be distributed in the lower index region; thus, the sensitivity can be dramatically improved. By exposing the cavities to different mass concentrations of NaCl solutions, we obtained that the wavelength shift per refractive index unit (RIU) for the sensor is 586 nm/RIU, which is one of the highest sensitivities achieved in a non-suspended cavity. Furthermore, the size of the sensing region of the reported sensor is only 22.8 µm × 1.5 µm, making the high-sensitivity PhC cavity sensor attractive for the realization of on-chip sensor arrays.

12.
Nano Lett ; 18(11): 6961-6966, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30296107

RESUMO

Ultrathin and flat optical lenses are essential for modern optical imaging, spectroscopy, and energy harvesting. Dielectric metasurfaces comprising nanoscale quasi-periodic resonator arrays are promising for such applications, as they can tailor the phase, amplitude, and polarization of light at subwavelength resolution, enabling multifunctional optical elements. To achieve 2π phase coverage, however, most dielectric metalenses need a thickness comparable to the wavelength, requiring the fabrication of high-aspect-ratio scattering elements. We report ultrathin dielectric metalenses made of van der Waals (vdW) materials, leveraging their high refractive indices and the incomplete phase design approach to achieve device thicknesses down to ∼λ/10, operating at infrared and visible wavelengths. These materials have generated strong interest in recent years due to their advantageous optoelectronic properties. Using vdW metalenses, we demonstrate near-diffraction-limited focusing and imaging and exploit their layered nature to transfer the fabricated metalenses onto flexible substrates to show strain-induced tunable focusing. Our work enables further downscaling of optical elements and opportunities for the integration of metasurface optics in ultraminiature optoelectronic systems.

13.
Nano Lett ; 17(1): 200-205, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27936763

RESUMO

Developing a nanoscale, integrable, and electrically pumped single mode light source is an essential step toward on-chip optical information technologies and sensors. Here, we demonstrate nanocavity enhanced electroluminescence in van der Waals heterostructures (vdWhs) at room temperature. The vertically assembled light-emitting device uses graphene/boron nitride as top and bottom tunneling contacts and monolayer WSe2 as an active light emitter. By integrating a photonic crystal cavity on top of the vdWh, we observe the electroluminescence is locally enhanced (>4 times) by the nanocavity. The emission at the cavity resonance is single mode and highly linearly polarized (84%) along the cavity mode. By applying voltage pulses, we demonstrate direct modulation of this single mode electroluminescence at a speed of ∼1 MHz, which is faster than most of the planar optoelectronics based on transition metal chalcogenides (TMDCs). Our work shows that cavity integrated vdWhs present a promising nanoscale optoelectronic platform.

14.
Sci Rep ; 5: 7987, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25614327

RESUMO

Graphene has emerged as a promising material for active plasmonic devices in the mid-infrared (MIR) region owing to its fast tunability, strong mode confinement, and long-lived collective excitation. In order to realize on-chip graphene plasmonics, several types of graphene plasmonic waveguides (GPWGs) have been investigated and most of them are with graphene ribbons suffering from the pattern-caused edge effect. Here we propose a novel nanoplasmonic waveguide with a pattern-free graphene monolayer on the top of a nano-trench. It shows that our GPWG with nanoscale light confinement, relatively low loss and slowed group velocity enables a significant modulation on the phase shift as well as the propagation loss over a broad band by simply applying a single low bias voltage, which is very attractive for realizing ultra-small optical modulators and optical switches for the future ultra-dense photonic integrated circuits. The strong light-matter interaction as well as tunable slow light is also of great interest for many applications such as optical nonlinearities.

15.
ACS Nano ; 8(11): 11386-93, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25372937

RESUMO

Graphene is well-known as a two-dimensional sheet of carbon atoms arrayed in a honeycomb structure. It has some unique and fascinating properties, which are useful for realizing many optoelectronic devices and applications, including transistors, photodetectors, solar cells, and modulators. To enhance light-graphene interactions and take advantage of its properties, a promising approach is to combine a graphene sheet with optical waveguides, such as silicon nanophotonic wires considered in this paper. Here we report local and nonlocal optically induced transparency (OIT) effects in graphene-silicon hybrid nanophotonic integrated circuits. A low-power, continuous-wave laser is used as the pump light, and the power required for producing the OIT effect is as low as ∼0.1 mW. The corresponding power density is several orders lower than that needed for the previously reported saturated absorption effect in graphene, which implies a mechanism involving light absorption by the silicon and photocarrier transport through the silicon-graphene junction. The present OIT effect enables low power, all-optical, broadband control and sensing, modulation and switching locally and nonlocally.

16.
Opt Lett ; 38(24): 5405-8, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24343002

RESUMO

An ultra-small disk resonator consisting of a suspended silicon disk with a submicron bending radius sitting on an SiO(2) pedestal is demonstrated experimentally. An asymmetrical suspended rib waveguide is integrated as the access waveguide for the suspended submicron disk resonator, which is used to realize an ultra-small optical sensor with an improved sensitivity due to the enhanced evanescent field interaction with the analyte. The present optical sensor also has a large measurement range because of the ultra-large free-spectral range of the submicron-disk resonator. As an example, a suspended submicron disk sensor with a bending radius of 0.8 µm is designed, fabricated, and characterized. The concentration of NaCl aqueous solution and organic liquids is measured with the suspended submicron-disk sensor, and the measured sensitivity is about 130 nm/RIU, which agrees well with the simulation value.

17.
Opt Express ; 21(22): 26908-13, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216912

RESUMO

We present the design, fabrication, and the characterization of high-Q slotted 1D photonic crystal (PhC) cavities with parabolic-width stack. Their peculiar geometry enables the location of the resonating mode close to the air-band. The majority of optical field distributes in the slotted low-index area and the light matter interaction with the analytes has been enhanced. Cavities with measured Q-factors ~10(4) have been demonstrated. The refractive index sensing measurement for NaCl solutions with different concentrations shows a sensitivity around 410. Both the achieved Q-factor and the sensitivity are higher than the one reported recently by using 2D slotted PhC cavities. The total size for the sensing part of the present device is reduced to 16.8 × 2.5 µm(2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...