Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Environ Sci Pollut Res Int ; 30(37): 87575-87587, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37423934

RESUMO

High intensity rainfall in southern China has led to soil erosion on sloping farmland, causing serious ecological and environmental problems. But how the interaction of rainfall factors and growth stages influence soil erosion and nitrogen loss on sugarcane-cultivated slope under natural rainfall have not been studied considerably. This study concentrated on the in situ runoff plot observation test. Surface runoff, soil erosion, and nitrogen loss under individual natural rainfall events during the different sugarcane growth stages (seedling stage (SS), tillering stage (TS), elongation stage (ES)) from May to September in 2019 and 2020 were recorded and measured. The effects of rainfall factors (intensity and amount) on soil erosion and nitrogen loss were quantified by path analysis. The influence of rainfall factors and sugarcane planting on soil erosion and nitrogen loss was analyzed. Surface runoff, soil erosion, and nitrogen loss on sugarcane-cultivated slope were 4354.1 m3/ha, 155.4 t/ha, and 25.87 kg/ha during 2019 to 2020, and were mainly concentrated in SS, accounting for 67.2%, 86.9%, and 81.9% of total surface runoff, soil erosion, and nitrogen loss, respectively. Nitrogen losses were mainly concentrated in surface runoff, accounting for 76.1% of total nitrogen loss, and the main form in surface runoff was nitrate nitrogen (NO3--N, 92.9%). Under individual rainfall events, surface runoff, soil erosion, and nitrogen loss changed with the changing of rainfall characteristics and sugarcane growth. Surface runoff and nitrogen loss were obviously affected by rainfall characteristics, while the soil erosion and nitrogen loss were affected by both rainfall characteristics and sugarcane growth stages. Path analysis indicated that maximum rainfall intensities at 15 min (I15) and 60 min (I60) were most significant to the production of surface runoff and soil erosion with direct path coefficients of 1.19 and 1.23, respectively. NO3--N and ammonium nitrogen (NH4+-N) losses in surface runoff were mostly influenced by maximum rainfall intensity at 30 min (I30) and I15 with direct path coefficients of 0.89 and 3.08, respectively. NO3--N and NH4+-N losses in sediment yield were mostly influenced by I15 and rainfall amount, and the direct path coefficients were 1.61 and 3.39, respectively. The main stage of soil and nitrogen loss was seedling stage, while the significant factors of rainfall characteristics affecting surface runoff, soil erosion, and nitrogen loss were quite different. The results provide theoretical support for soil erosion and quantitative rainfall erosion factors of sugarcane-cultivated slope in southern China.


Assuntos
Saccharum , Solo , Nitrogênio/análise , Chuva , Movimentos da Água , Grão Comestível/química , China
2.
Front Pharmacol ; 13: 837756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370735

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder with prominent dopamine (DA) neuron degeneration. PD affects millions of people worldwide, but currently available therapies are limited to temporary relief of symptoms. As an effort to discover disease-modifying therapeutics, we have conducted a screen of 1,403 bioactive small molecule compounds using an in vivo whole organism screening assay in transgenic larval zebrafish. The transgenic model expresses the bacterial enzyme nitroreductase (NTR) driven by the tyrosine hydroxylase (th) promotor. NTR converts the commonly used antibiotic pro-drug metronidazole (MTZ) to the toxic nitroso radical form to induce DA neuronal loss. 57 compounds were identified with a brain health score (BHS) that was significantly improved compared to the MTZ treatment alone after FDR adjustment (padj<0.05). Independently, we curated the high throughput screening (HTS) data by annotating each compound with pharmaceutical classification, known mechanism of action, indication, IC50, and target. Using the Reactome database, we performed pathway analysis, which uncovered previously unknown pathways in addition to validating previously known pathways associated with PD. Non-topology-based pathway analysis of the screening data further identified apoptosis, estrogen hormone, dipeptidyl-peptidase 4, and opioid receptor Mu1 to be potentially significant pathways and targets involved in neuroprotection. A total of 12 compounds were examined with a secondary assay that imaged DA neurons before and after compound treatment. The z'-factor of this secondary assay was determined to be 0.58, suggesting it is an excellent assay for screening. Etodolac, nepafenac, aloperine, protionamide, and olmesartan showed significant neuroprotection and was also validated by blinded manual DA neuronal counting. To determine whether these compounds are broadly relevant for neuroprotection, we tested them on a conduritol-b-epoxide (CBE)-induced Gaucher disease (GD) model, in which the activity of glucocerebrosidase (GBA), a commonly known genetic risk factor for PD, was inhibited. Aloperine, olmesartan, and nepafenac showed significant protection of DA neurons in this assay. Together, this work, which combines high content whole organism in vivo imaging-based screen and bioinformatic pathway analysis of the screening dataset, delineates a previously uncharted approach for identifying hit-to-lead candidates and for implicating previously unknown pathways and targets involved in DA neuron protection.

3.
Elife ; 102021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550070

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder without effective disease-modifying therapeutics. Here, we establish a chemogenetic dopamine (DA) neuron ablation model in larval zebrafish with mitochondrial dysfunction and robustness suitable for high-content screening. We use this system to conduct an in vivo DA neuron imaging-based chemical screen and identify the Renin-Angiotensin-Aldosterone System (RAAS) inhibitors as significantly neuroprotective. Knockdown of the angiotensin receptor 1 (agtr1) in DA neurons reveals a cell-autonomous mechanism of neuroprotection. DA neuron-specific RNA-seq identifies mitochondrial pathway gene expression that is significantly restored by RAAS inhibitor treatment. The neuroprotective effect of RAAS inhibitors is further observed in a zebrafish Gaucher disease model and Drosophila pink1-deficient PD model. Finally, examination of clinical data reveals a significant effect of RAAS inhibitors in delaying PD progression. Our findings reveal the therapeutic potential and mechanisms of targeting the RAAS pathway for neuroprotection and demonstrate a salient approach that bridges basic science to translational medicine.


Parkinson's disease is caused by the slow death and deterioration of brain cells, in particular of the neurons that produce a chemical messenger known as dopamine. Certain drugs can mitigate the resulting drop in dopamine levels and help to manage symptoms, but they cause dangerous side-effects. There is no treatment that can slow down or halt the progress of the condition, which affects 0.3% of the population globally. Many factors, both genetic and environmental, contribute to the emergence of Parkinson's disease. For example, dysfunction of the mitochondria, the internal structures that power up cells, is a known mechanism associated with the death of dopamine-producing neurons. Zebrafish are tiny fish which can be used to study Parkinson's disease, as they are easy to manipulate in the lab and share many characteristics with humans. In particular, they can be helpful to test the effects of various potential drugs on the condition. Here, Kim et al. established a new zebrafish model in which dopamine-producing brain cells die due to their mitochondria not working properly; they then used this assay to assess the impact of 1,403 different chemicals on the integrity of these cells. A group of molecules called renin-angiotensin-aldosterone (RAAS) inhibitors was shown to protect dopamine-producing neurons and stopped them from dying as often. These are already used to treat high blood pressure as they help to dilate blood vessels. In the brain, however, RAAS worked by restoring certain mitochondrial processes. Kim et al. then investigated whether these results are relevant in other, broader contexts. They were able to show that RAAS inhibitors have the same effect in other animals, and that Parkinson's disease often progresses more slowly in patients that already take these drugs for high blood pressure. Taken together, these findings therefore suggest that RAAS inhibitors may be useful to treat Parkinson's disease, as well as other brain illnesses that emerge because of mitochondria not working properly. Clinical studies and new ways to improve these drugs are needed to further investigate and capitalize on these potential benefits.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Antiparkinsonianos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Sistema Renina-Angiotensina/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Animais Geneticamente Modificados , Antiparkinsonianos/uso terapêutico , Estudos de Casos e Controles , Bases de Dados Factuais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Sci Adv ; 6(32): eaba1306, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32821821

RESUMO

Caloric restriction (CR) is known to extend life span across species; however, the molecular mechanisms are not well understood. We investigate the mechanism by which glucose restriction (GR) extends yeast replicative life span, by combining ribosome profiling and RNA-seq with microfluidic-based single-cell analysis. We discovered a cross-talk between glucose sensing and the regulation of intracellular methionine: GR down-regulated the transcription and translation of methionine biosynthetic enzymes and transporters, leading to a decreased intracellular methionine concentration; external supplementation of methionine cancels the life span extension by GR. Furthermore, genetic perturbations that decrease methionine synthesis/uptake extend life span. These observations suggest that intracellular methionine mediates the life span effects of various nutrient and genetic perturbations, and that the glucose-methionine cross-talk is a general mechanism for coordinating the nutrient status and the translation/growth of a cell. Our work also implicates proteasome as a downstream effector of the life span extension by GR.


Assuntos
Longevidade , Metionina , Suplementos Nutricionais , Glucose/farmacologia , Saccharomyces cerevisiae/genética
5.
Cell Rep ; 29(7): 1986-2000.e8, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722212

RESUMO

Ectopic expression of Oct4, Sox2, Klf4, and c-Myc can reprogram differentiated somatic cells into induced pluripotent stem cells (iPSCs). For years, Oct4 has been considered the key reprogramming factor core of the four factors. Here, we challenge this view by reporting a core function of Sox2 and Klf4 in reprogramming. We found that polycistronic expression of Sox2 and Klf4 was sufficient to induce pluripotency in the absence of exogenous Oct4, and the stoichiometry of Sox2 and Klf4 was essential. Sox2 and Klf4 cooperatively bound across the genome, leading to epigenetic remodeling of their targets, including pluripotency genes and gradual activation of the pluripotency network. Interestingly, cells of different germ layer origins, fibroblasts (mesoderm) and neural progenitor cells (ectoderm), showed convergent reprogramming trajectories and similar efficiency. This work demonstrates a core function of Sox2 and Klf4 in pluripotency induction and shows that this mechanism is independent of germ layer origin.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Células HEK293 , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética
6.
Hum Hered ; 83(3): 117-129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30669151

RESUMO

OBJECTIVES: Genome-wide association studies (GWASs) have revealed many candidate SNPs, but the mechanisms by which these SNPs influence diseases are largely unknown. In order to decipher the underlying mechanisms, several methods have been developed to predict disease-associated genes based on the integration of GWAS and eQTL data (e.g., Sherlock and COLOC). A number of studies have also incorporated information from gene networks into GWAS analysis to reprioritize candidate genes. METHODS: Motivated by these two different approaches, we have developed a statistical framework to integrate information from GWAS, eQTL, and protein-protein interaction (PPI) data to predict disease-associated genes. Our approach is based on a hidden Markov random field (HMRF) model, and we called the resulting computational algorithm GeP-HMRF (a GWAS-eQTL-PPI-based HMRF). RESULTS: We compared the performance of GeP-HMRF with Sherlock, COLOC, and NetWAS methods on 9 GWAS datasets, using the disease-related genes in the MalaCards database as the standard, and found that GeP-HMRF significantly improves the prediction accuracy. We also applied GeP-HMRF to an age-related macular degeneration disease (AMD) dataset. Among the top 50 genes predicted by GeP-HMRF, 7 are reported by the MalaCards database to be AMD-related with an enrichment p value of 3.61 × 10-119. Among the top 20 genes predicted by GeP-HMRF, CFHR1, CGHR3, HTRA1, and CFH are AMD-related in the MalaCards database, and another 9 genes are supported by the literature. CONCLUSIONS: We built a unified statistical model to predict disease-related genes by integrating GWAS, eQTL, and PPI data. Our approach outperforms Sherlock, COLOC, and NetWAS in simulation studies and 9 GWAS datasets. Our approach can be generalized to incorporate other molecular trait data beyond eQTL and other interaction data beyond PPI.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Mapeamento de Interação de Proteínas/métodos , Locos de Características Quantitativas/genética , Simulação por Computador , Bases de Dados Genéticas , Redes Reguladoras de Genes , Humanos , Degeneração Macular/genética , Fenótipo
7.
J Vis Exp ; (121)2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28448036

RESUMO

Budding yeast Saccharomyces cerevisiae is an important model organism in aging research. Genetic studies have revealed many genes with conserved effects on the lifespan across species. However, the molecular causes of aging and death remain elusive. To gain a systematic understanding of the molecular mechanisms underlying yeast aging, we need high-throughput methods to measure lifespan and to quantify various cellular and molecular phenotypes in single cells. Previously, we developed microfluidic devices to track budding yeast mother cells throughout their lifespan while flushing away newborn daughter cells. This article presents a method for preparing microfluidic chips and for setting up microfluidic experiments. Multiple channels can be used to simultaneously track cells under different conditions or from different yeast strains. A typical setup can track hundreds of cells per channel and allow for high-resolution microscope imaging throughout the lifespan of the cells. Our method also allows detailed characterization of the lifespan, molecular markers, cell morphology, and the cell cycle dynamics of single cells. In addition, our microfluidic device is able to trap a significant amount of fresh mother cells that can be identified by downstream image analysis, making it possible to measure the lifespan with higher accuracy.


Assuntos
Dispositivos Lab-On-A-Chip , Fenótipo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Ciclo Celular , Divisão Celular
8.
BMC Genomics ; 18(1): 189, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28212626

RESUMO

BACKGROUND: Among twenty amino acids, methionine has a special role as it is coded by the translation initiation codon and methionyl-tRNAi (Met-tRNAi) is required for the assembly of the translation initiation complex. Thus methionine may play a special role in global gene regulation. Methionine has also been known to play important roles in cell growth, development, cancer, and aging. In this work, we characterize the translational and transcriptional programs induced by methionine restriction (MetR) and investigate the potential mechanisms through which methionine regulates gene expression, using the budding yeast S. cerevisiae as the model organism. RESULTS: Using ribosomal profiling and RNA-seq, we observed a broad spectrum of gene expression changes in response to MetR and identified hundreds of genes whose transcript level and/or translational efficiency changed significantly. These genes show clear functional themes, suggesting that cell slows down its growth and cell cycle progression and increases its stress resistance and maintenance in response to MetR. Interestingly, under MetR cell also decreases glycolysis and increases respiration, and increased respiration was linked to lifespan extension caused by caloric restriction. Analysis of genes whose translational efficiency changed significantly under MetR revealed different modes of translational regulation: 1) Ribosome loading patterns in the 5'UTR and coding regions of genes with increased translational efficiency suggested mechanisms both similar and different from that for the translational regulation of Gcn4 under general amino acid starvation condition; 2) Genes with decreased translational efficiency showed strong enrichment of lysine, glutamine, and glutamate codons, supporting the model that methionine can regulate translation by controlling tRNA thiolation. CONCLUSIONS: MetR induced a broad spectrum of gene expression changes at both the transcriptional and translational levels, with clear functional themes indicative of the physiological state of the cell under MetR. Different modes of translational regulation were induced by MetR, including the regulation of the ribosome loading at 5'UTR and regulation by tRNA thiolation. Since MetR extends the lifespan of many species, the list of genes we identified in this study can be good candidates for studying the mechanisms of lifespan extension.


Assuntos
Perfilação da Expressão Gênica , Metionina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Ribossomos/genética , Análise de Sequência de RNA , Transcrição Gênica/efeitos dos fármacos , Códon/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
9.
Cell Rep ; 18(3): 624-635, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28099842

RESUMO

Brown adipose tissue (BAT) has attracted considerable research interest because of its therapeutic potential to treat obesity and associated metabolic diseases. Augmentation of brown fat mass and/or its function may represent an attractive strategy to enhance energy expenditure. Using high-throughput phenotypic screening to induce brown adipocyte reprogramming in committed myoblasts, we identified a retinoid X receptor (RXR) agonist, bexarotene (Bex), that efficiently converted myoblasts into brown adipocyte-like cells. Bex-treated mice exhibited enlarged BAT mass, enhanced BAT function, and a modest browning effect in subcutaneous white adipose tissue (WAT). Expression analysis showed that Bex initiated several "browning" pathways at an early stage during brown adipocyte reprogramming. Our findings suggest RXRs as new master regulators that control brown and beige fat development and activation, unlike the common adipogenic regulator PPARγ. Moreover, we demonstrated that selective RXR activation may potentially offer a therapeutic approach to manipulate brown/beige fat function in vivo.


Assuntos
Tecido Adiposo Marrom/metabolismo , Reprogramação Celular/genética , Adipogenia/efeitos dos fármacos , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/metabolismo , Animais , Bexaroteno , Peso Corporal/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , PPAR gama/metabolismo , Interferência de RNA , Receptor X Retinoide alfa/antagonistas & inibidores , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo , Receptor X Retinoide beta/antagonistas & inibidores , Receptor X Retinoide beta/genética , Receptor X Retinoide beta/metabolismo , Receptor X Retinoide gama/antagonistas & inibidores , Receptor X Retinoide gama/genética , Receptor X Retinoide gama/metabolismo , Tetra-Hidronaftalenos/farmacologia , Termogênese/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1/metabolismo
10.
Mol Cell ; 63(4): 633-646, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27499295

RESUMO

The repair outcomes at site-specific DNA double-strand breaks (DSBs) generated by the RNA-guided DNA endonuclease Cas9 determine how gene function is altered. Despite the widespread adoption of CRISPR-Cas9 technology to induce DSBs for genome engineering, the resulting repair products have not been examined in depth. Here, the DNA repair profiles of 223 sites in the human genome demonstrate that the pattern of DNA repair following Cas9 cutting at each site is nonrandom and consistent across experimental replicates, cell lines, and reagent delivery methods. Furthermore, the repair outcomes are determined by the protospacer sequence rather than genomic context, indicating that DNA repair profiling in cell lines can be used to anticipate repair outcomes in primary cells. Chemical inhibition of DNA-PK enabled dissection of the DNA repair profiles into contributions from c-NHEJ and MMEJ. Finally, this work elucidates a strategy for using "error-prone" DNA-repair machinery to generate precise edits.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Endonucleases/metabolismo , Edição de Genes , Perfilação da Expressão Gênica/métodos , Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR , Endonucleases/genética , Células HCT116 , Células HEK293 , Humanos , Células K562 , Interferência de RNA , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Fatores de Tempo , Transfecção
11.
Cell Stem Cell ; 18(5): 653-67, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27133794

RESUMO

Cellular reprogramming using chemically defined conditions, without genetic manipulation, is a promising approach for generating clinically relevant cell types for regenerative medicine and drug discovery. However, small-molecule approaches for inducing lineage-specific stem cells from somatic cells across lineage boundaries have been challenging. Here, we report highly efficient reprogramming of mouse fibroblasts into induced neural stem cell-like cells (ciNSLCs) using a cocktail of nine components (M9). The resulting ciNSLCs closely resemble primary neural stem cells molecularly and functionally. Transcriptome analysis revealed that M9 induces a gradual and specific conversion of fibroblasts toward a neural fate. During reprogramming specific transcription factors such as Elk1 and Gli2 that are downstream of M9-induced signaling pathways bind and activate endogenous master neural genes to specify neural identity. Our study provides an effective chemical approach for generating neural stem cells from mouse fibroblasts and reveals mechanistic insights into underlying reprogramming processes.


Assuntos
Reprogramação Celular/genética , Meios de Cultura/farmacologia , Fibroblastos/citologia , Células-Tronco Neurais/citologia , Transdução de Sinais/genética , Ativação Transcricional/genética , Animais , Linhagem da Célula/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Embrião de Mamíferos/citologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Camundongos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Multipotentes/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
12.
Science ; 352(6290): 1216-20, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27127239

RESUMO

Reprogramming somatic fibroblasts into alternative lineages would provide a promising source of cells for regenerative therapy. However, transdifferentiating human cells into specific homogeneous, functional cell types is challenging. Here we show that cardiomyocyte-like cells can be generated by treating human fibroblasts with a combination of nine compounds that we term 9C. The chemically induced cardiomyocyte-like cells uniformly contracted and resembled human cardiomyocytes in their transcriptome, epigenetic, and electrophysiological properties. 9C treatment of human fibroblasts resulted in a more open-chromatin conformation at key heart developmental genes, enabling their promoters and enhancers to bind effectors of major cardiogenic signals. When transplanted into infarcted mouse hearts, 9C-treated fibroblasts were efficiently converted to chemically induced cardiomyocyte-like cells. This pharmacological approach to lineage-specific reprogramming may have many important therapeutic implications after further optimization to generate mature cardiac cells.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Miócitos Cardíacos/citologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Transdiferenciação Celular , Cromatina/química , Cromatina/metabolismo , Modelos Animais de Doenças , Fibroblastos/citologia , Coração/embriologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , Cadeias Pesadas de Miosina/genética , Organogênese/genética , Conformação Proteica , Pele/citologia , Bibliotecas de Moléculas Pequenas/química , Transcriptoma , Transdução Genética
13.
Proc Natl Acad Sci U S A ; 112(38): 11977-82, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351681

RESUMO

Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.


Assuntos
Proteoma/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Divisão Celular Assimétrica , Citometria de Fluxo , Ontologia Genética , Proteínas de Fluorescência Verde/metabolismo , Ensaios de Triagem em Larga Escala , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
14.
Cell ; 160(5): 928-939, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723167

RESUMO

Telomerase is required for long-term telomere maintenance and protection. Using single budding yeast mother cell analyses we found that, even early after telomerase inactivation (ETI), yeast mother cells show transient DNA damage response (DDR) episodes, stochastically altered cell-cycle dynamics, and accelerated mother cell aging. The acceleration of ETI mother cell aging was not explained by increased reactive oxygen species (ROS), Sir protein perturbation, or deprotected telomeres. ETI phenotypes occurred well before the population senescence caused late after telomerase inactivation (LTI). They were morphologically distinct from LTI senescence, were genetically uncoupled from telomere length, and were rescued by elevating dNTP pools. Our combined genetic and single-cell analyses show that, well before critical telomere shortening, telomerase is continuously required to respond to transient DNA replication stress in mother cells and that a lack of telomerase accelerates otherwise normal aging.


Assuntos
Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Ciclo Celular , Cromossomos Fúngicos/metabolismo , Replicação do DNA , Mitocôndrias/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo
15.
J Neurosci ; 34(42): 13911-23, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25319688

RESUMO

Balancing quiescence, self-renewal, and differentiation in adult stem cells is critical for tissue homeostasis. The underlying mechanisms, however, remain incompletely understood. Here we identify Fezf2 as a novel regulator of fate balance in adult zebrafish dorsal telencephalic neural stem cells (NSCs). Transgenic reporters show intermingled fezf2-GFP(hi) quiescent and fezf2-GFP(lo) proliferative NSCs. Constitutive or conditional impairment of fezf2 activity demonstrates its requirement for maintaining quiescence. Analyses of genetic chimeras reveal a dose-dependent role of fezf2 in NSC activation, suggesting that the difference in fezf2 levels directionally biases fate. Single NSC profiling coupled with genetic analysis further uncovers a fezf2-dependent gradient Notch activity that is high in quiescent and low in proliferative NSCs. Finally, fezf2-GFP(hi) quiescent and fezf2-GFP(lo) proliferative NSCs are observed in postnatal mouse hippocampus, suggesting possible evolutionary conservation. Our results support a model in which fezf2 heterogeneity patterns gradient Notch activity among neighbors that is critical to balance NSC fate.


Assuntos
Células-Tronco Adultas/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Células-Tronco Neurais/metabolismo , Receptores Notch/metabolismo , Animais , Animais Geneticamente Modificados , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Transgênicos , Neurogênese/fisiologia , Peixe-Zebra
16.
PLoS Genet ; 9(9): e1003821, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086155

RESUMO

Argonaute proteins are often credited for their cytoplasmic activities in which they function as central mediators of the RNAi platform and microRNA (miRNA)-mediated processes. They also facilitate heterochromatin formation and establishment of repressive epigenetic marks in the nucleus of fission yeast and plants. However, the nuclear functions of Ago proteins in mammalian cells remain elusive. In the present study, we combine ChIP-seq (chromatin immunoprecipitation coupled with massively parallel sequencing) with biochemical assays to show that nuclear Ago1 directly interacts with RNA Polymerase II and is widely associated with chromosomal loci throughout the genome with preferential enrichment in promoters of transcriptionally active genes. Additional analyses show that nuclear Ago1 regulates the expression of Ago1-bound genes that are implicated in oncogenic pathways including cell cycle progression, growth, and survival. Our findings reveal the first landscape of human Ago1-chromosomal interactions, which may play a role in the oncogenic transcriptional program of cancer cells.


Assuntos
Proteínas Argonautas/genética , Cromossomos/genética , RNA Polimerases Dirigidas por DNA/genética , Fatores de Iniciação em Eucariotos/genética , Neoplasias/genética , Proteínas Argonautas/metabolismo , Sequência de Bases , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Genoma Humano , Heterocromatina/genética , Humanos , MicroRNAs/genética , Neoplasias/patologia , Regiões Promotoras Genéticas , Ligação Proteica/genética
17.
Elife ; 1: e00048, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23066505

RESUMO

The unfolded protein response (UPR) monitors the protein folding capacity of the endoplasmic reticulum (ER). In all organisms analyzed to date, the UPR drives transcriptional programs that allow cells to cope with ER stress. The non-conventional splicing of Hac1 (yeasts) and XBP1 (metazoans) mRNA, encoding orthologous UPR transcription activators, is conserved and dependent on Ire1, an ER membrane-resident kinase/endoribonuclease. We found that the fission yeast Schizosaccharomyces pombe lacks both a Hac1/XBP1 ortholog and a UPR-dependent-transcriptional-program. Instead, Ire1 initiates the selective decay of a subset of ER-localized-mRNAs that is required to survive ER stress. We identified Bip1 mRNA, encoding a major ER-chaperone, as the sole mRNA cleaved upon Ire1 activation that escapes decay. Instead, truncation of its 3' UTR, including loss of its polyA tail, stabilized Bip1 mRNA, resulting in increased Bip1 translation. Thus, S. pombe uses a universally conserved stress-sensing machinery in novel ways to maintain homeostasis in the ER.DOI:http://dx.doi.org/10.7554/eLife.00048.001.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Schizosaccharomyces/genética , Resposta a Proteínas não Dobradas , Regiões 3' não Traduzidas , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Homeostase/genética , Biossíntese de Proteínas , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Schizosaccharomyces/metabolismo , Transdução de Sinais , Transcrição Gênica
18.
J Biol Chem ; 286(21): 18641-9, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21471212

RESUMO

Identification of transcription factor targets is critical to understanding gene regulatory networks. Here, we uncover transcription factor binding sites and target genes employing systematic evolution of ligands by exponential enrichment (SELEX). Instead of selecting randomly synthesized DNA oligonucleotides as in most SELEX studies, we utilized zebrafish genomic DNA to isolate fragments bound by Fezf2, an evolutionarily conserved gene critical for vertebrate forebrain development. This is, to our knowledge, the first time that SELEX is applied to a vertebrate genome. Computational analysis of bound genomic fragments predicted a core consensus binding site, which identified response elements that mediated Fezf2-dependent transcription both in vitro and in vivo. Fezf2-bound fragments were enriched for conserved sequences. Surprisingly, ∼20% of these fragments overlapped well annotated protein-coding exons. Through loss of function, gain of function, and chromatin immunoprecipitation, we further identified and validated eomesa/tbr2 and lhx2b as biologically relevant target genes of Fezf2. Mutations in eomesa/tbr2 cause microcephaly in humans, whereas lhx2b is a critical regulator of cell fate and axonal targeting in the developing forebrain. These results demonstrate the feasibility of employing genomic SELEX to identify vertebrate transcription factor binding sites and target genes and reveal Fezf2 as a transcription activator and a candidate for evaluation in human microcephaly.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Prosencéfalo/embriologia , Elementos de Resposta/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , DNA/genética , DNA/metabolismo , Células HEK293 , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Técnica de Seleção de Aptâmeros , Fatores de Transcrição/genética , Transcrição Gênica , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
19.
Mol Syst Biol ; 6: 420, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20959818

RESUMO

The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), between and among genes encoding STFs and GTFs in Saccharomyces cerevisiae. This allowed us to both reconstruct regulatory models for specific subsets of transcription factors and identify global epistatic patterns. Overall, there was a much stronger preference for negative relative to positive genetic interactions among STFs than there was among GTFs. Negative genetic interactions, which often identify factors working in non-essential, redundant pathways, were also enriched for pairs of STFs that co-regulate similar sets of genes. Microarray analysis demonstrated that pairs of STFs that display negative genetic interactions regulate gene expression in an independent rather than coordinated manner. Collectively, these data suggest that parallel/compensating relationships between regulators, rather than linear pathways, often characterize transcriptional circuits.


Assuntos
Epistasia Genética , Regulação Fúngica da Expressão Gênica/fisiologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/fisiologia , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/genética , Redes Reguladoras de Genes , Genes Fúngicos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Nat Biotechnol ; 28(9): 970-5, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20802496

RESUMO

Gene expression is regulated in part by protein transcription factors that bind target regulatory DNA sequences. Predicting DNA binding sites and affinities from transcription factor sequence or structure is difficult; therefore, experimental data are required to link transcription factors to target sequences. We present a microfluidics-based approach for de novo discovery and quantitative biophysical characterization of DNA target sequences. We validated our technique by measuring sequence preferences for 28 Saccharomyces cerevisiae transcription factors with a variety of DNA-binding domains, including several that have proven difficult to study by other techniques. For each transcription factor, we measured relative binding affinities to oligonucleotides covering all possible 8-bp DNA sequences to create a comprehensive map of sequence preferences; for four transcription factors, we also determined absolute affinities. We expect that these data and future use of this technique will provide information essential for understanding transcription factor specificity, improving identification of regulatory sites and reconstructing regulatory interactions.


Assuntos
Fenômenos Biofísicos , Técnicas Analíticas Microfluídicas/métodos , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Extratos Celulares , Fluorescência , Cinética , Dados de Sequência Molecular , Coelhos , Reticulócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...