Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38327078

RESUMO

Nucleic acid is one of the most important substances in organisms, and its dynamic changes are closely related to physiological processes. Nucleic acid labeling is conducive to providing important information for the early diagnosis and treatment of pathophysiological processes. Here, we utilized the transfer mechanism between carbon sources and CDs to synthesize wavelength-adjustable N-CDs for the nucleic acid image. Along with the increased graphite nitrogen (from 10.6 to 30.1%) gradually by the precise design of the nitrogen structure in carbon sources (e.g., primary amines, secondary amines, tertiary amines, and liking graphite-nitrogen), the energy gap of CDs reduced, resulting in adjustable wavelength from visible to near-infrared range (from 461 nm/527 nm to 650 nm/676 nm). Furthermore, N-CDs exhibited a selective affinity for nucleic acids, especially RNA. Therefore, N-CDs support an efficient platform for real-time tracking of RNA dynamic changes in cells.

2.
Small ; 20(10): e2304407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880907

RESUMO

Cuproptosis is a novel form of regulated cell death which guarantees to increase the efficacy of existing anticancer treatments that employ traditional apoptotic therapeutics. However, reducing the amount of undesirable Cu ions released in normal tissue and maximizing Cu-induced cuproptosis therapeutic effects at tumor sites are the major challenges. In this study, exploiting the chemical properties of copper ionophores and the tumor microenvironment, a novel method is developed for controlling the valence of copper ions that cause photoinduced cuproptosis in tumor cells. CJS-Cu nanoparticles (NPs) can selectively induce cuproptosis after cascade reactions through H2 O2 -triggered Cu2+ release, photoirradiation-induced superoxide radical (∙O2 - ) generation, and reduction of Cu2+ to Cu+ by ∙O2 - . The generated reactive oxygen species can result in glutathione depletion and iron-sulfur cluster protein damage and further augmented cuproptosis. CJS-Cu NPs effectively suppressed tumor growth and downregulated the expression of metastasis-related proteins, contributing to the complete inhibition of lung metastasis. Ultimately, this study suggests novel avenues for the manipulation of cellular cuproptosis through photochemical reactions.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Humanos , Cobre , Glutationa , Superóxidos , Apoptose , Microambiente Tumoral
3.
Adv Mater ; 35(47): e2308205, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37792315

RESUMO

Ultrasound, featuring deep tissue penetration and noninvasiveness, offers a new opportunity to activate functional materials in a tumor-selective manner. However, very few direct ultrasound-responsive redox systems are applicable under therapeutic ultrasound (1 MHz). Herein, the investigations on nanoprodrug of DHE@PEG-SS-DSPE are reported, which exhibit glutathione-activated release of dihydroethidium (DHE) in tumor cells. DHE is stable with good biosafety and is transformed into cytotoxic ethidium to induce DNA damage under medical ultrasound irradiation, accompanied by the generation of reactive oxygen species. Further, DHE@PEG-SS-DSPE could effectively induce ferroptosis through glutathione depletion, lipid peroxide accumulation, and downregulation of glutathione peroxidase 4. In vivo studies confirmed that DHE@PEG-SS-DSPE nanoparticles effectively inhibit both the growth of solid tumors and the expression of metastasis-related proteins in mice, thus effectively inhibiting lung metastasis. This DHE-based prodrug nanosystem could lay a foundation for the design of ultrasound-driven therapeutic agents.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Neoplasias , Pró-Fármacos , Camundongos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/metabolismo , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Pulmonares/patologia , Glutationa , Linhagem Celular Tumoral
4.
Chem Sci ; 14(34): 9095-9100, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37655031

RESUMO

Ferroptosis therapy is gradually becoming a new strategy for the treatment of non-small cell lung cancer (NSCLC) because of its active iron metabolism. Because the hypoxic microenvironment in NSCLC inhibits ferroptosis heavily, the therapeutic effect of some ferroptosis inducers is severely limited. To address this issue, this work describes a promising photosensitizer ENBS-ML210 and its application against hypoxia of NSCLC treatment based on type I photodynamic therapy and glutathione peroxidase 4 (GPX4)-targeted ferroptosis. ENBS-ML210 can promote lipid peroxidation and reduce GPX4 expression by generating superoxide anion radicals under 660 nm light irradiation, which reverses the hypoxia-induced resistance of ferroptosis and effectively kills H1299 tumor cells. Finally, the excellent synergistic antitumor effects are confirmed both in vitro and in vivo. We firmly believe that this method will provide a new direction for the clinical treatment of NSCLC in the future.

5.
Adv Healthc Mater ; 11(3): e2101449, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34879433

RESUMO

The principle of photochemical transformation has shown significant inspiration on phototherapy of solid tumors. However, both photodynamic therapy (PDT) and photothermal therapy (PTT) can induce stress response of tumor cells, which draw the attention in recent. Herein, an asymmetric and lollipop like nanostructure consisting of gold nanorod/titanium dioxide (l-TiO2 -GNR) is developed by controlling single head growth of titanium dioxide (TiO2 ) on gold nanorods (GNR). Through the reasonable utilization of hot electrons of GNR by 808 nm light irradiation, l-TiO2 -GNR perform type I-PDT, mild PTT (48 °C), and H2 therapy which is efficient for hypoxic tumors. In particular, H2 can downregulate both triphosadenine and heat shock protein which are found to be main source of tumor stress response. l-TiO2 -GNR opens a new window for treatment of hypoxic tumor by the perfect synergy of type I-PDT, mild PTT, and H2 therapy.


Assuntos
Nanotubos , Fotoquimioterapia , Ouro/química , Ouro/farmacologia , Nanotubos/química , Fototerapia , Terapia Fototérmica
6.
Biosens Bioelectron ; 176: 112886, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33421760

RESUMO

Super-resolution fluorescence microscopy has emerged as a powerful tool for studying mitochondrial dynamics in living cells. However, the lack of photostable and chemstable probe makes long-term super-resolution imaging of mitochondria still a challenging work. Herein, we reported a 4-azetidinyl-naphthliamide derived SNAP-tag probe AN-BG exhibiting excellent fluorogenicity and photostability for long-term super-resolution imaging of mitochondrial dynamics. The azetidinyl group and naphthalimide fluorophore are in a flat conformation which can effectively suppress twisted intramolecular charge transfer and then effectively improve the brightness and photostability. This planarized molecular structure is conducive to the formation of fluorescence-quenched J-aggregates, and the protein labeling process will depolymerize the probes and restore fluorescence. Fluorescent labeling mitochondrial inner membrane proteins via SNAP tags overcomes the shortcomings that variations in mitochondrial inner membrane potential will release probes attached to mitochondria by electrostatic interactions. Therefore, AN-BG realized the stable labeling of mitochondria and the long-term imaging of mitochondrial dynamics under super-resolution microscopy.


Assuntos
Técnicas Biossensoriais , Dinâmica Mitocondrial , Corantes Fluorescentes , Microscopia de Fluorescência , Naftalimidas
7.
Sensors (Basel) ; 21(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375503

RESUMO

This paper proposes an indoor positioning method based on iBeacon technology that combines anomaly detection and a weighted Levenberg-Marquadt (LM) algorithm. The proposed solution uses the isolation forest algorithm for anomaly detection on the collected Received Signal Strength Indicator (RSSI) data from different iBeacon base stations, and calculates the anomaly rate of each signal source while eliminating abnormal signals. Then, a weight matrix is set by using each anomaly ratio and the RSSI value after eliminating the abnormal signal. Finally, the constructed weight matrix and the weighted LM algorithm are combined to solve the positioning coordinates. An Android smartphone was used to verify the positioning method proposed in this paper in an indoor scene. This experimental scenario revealed an average positioning error of 1.540 m and a root mean square error (RMSE) of 1.748 m. A large majority (85.71%) of the positioning point errors were less than 3 m. Furthermore, the RMSE of the method proposed in this paper was, respectively, 38.69%, 36.60%, and 29.52% lower than the RMSE of three other methods used for comparison. The experimental results show that the iBeacon-based indoor positioning method proposed in this paper can improve the precision of indoor positioning and has strong practicability.

8.
Angew Chem Int Ed Engl ; 59(45): 20215-20223, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32776641

RESUMO

Herein, we reported a simple, fast, and quantitative theoretical descriptor ΔGC-O that allows accurate predictions of a wide range of spontaneously blinking rhodamines. ΔGC-O denotes the Gibbs free energy differences between the closed and open forms of rhodamines and has a good linear relationship with experimental pKcycl values. This correlation affords an effective guide for the quantitative designs of spontaneously blinking rhodamines and eliminates trial-and-error. We have validated the predictive power of ΔGC-O via the development of two spontaneously blinking rhodamines of different colors and enhanced brightness. We also demonstrated their super-resolution imaging utilities in dynamic live-cell imaging. We expect that ΔGC-O will greatly facilitate the efficient creations of spontaneously blinking fluorophores and aid the advancements of super-resolution bioimaging techniques.


Assuntos
Rodaminas/metabolismo , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...