Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Mater Sci Mater Med ; 35(1): 32, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896160

RESUMO

This study leverages nanotechnology by encapsulating indocyanine green (ICG) and paclitaxel (Tax) using zeolitic imidazolate frameworks-8 (ZIF-8) as a scaffold. This study aims to investigate the chemo-photothermal therapeutic potential of ZIF-8@ICG@Tax nanoparticles (NPs) in the treatment of non-small cell lung cancer (NSCLC). An "all-in-one" theranostic ZIF-8@ICG@Tax NPs was conducted by self-assembly based on electrostatic interaction. First, the photothermal effect, stability, pH responsiveness, drug release, and blood compatibility of ZIF-8@ICG@Tax were evaluated through in vitro testing. Furthermore, the hepatic and renal toxicity of ZIF-8@ICG@Tax were assessed through in vivo testing. Additionally, the anticancer effects of these nanoparticles were investigated both in vitro and in vivo. Uniform and stable chemo-photothermal ZIF-8@ICG@Tax NPs had been successfully synthesized and had outstanding drug releasing capacities. Moreover, ZIF-8@ICG@Tax NPs showed remarkable responsiveness dependent both on pH in the tumor microenvironment and NIR irradiation, allowing for targeted drug delivery and controlled drug release. NIR irradiation can enhance the tumor cell response to ZIF-8@ICG@Tax uptake, thereby promoting the anti-tumor growth in vitro and in vivo. ZIF-8@ICG@Tax and NIR irradiation have demonstrated remarkable synergistic anti-tumor growth properties compared to their individual components. This novel theranostic chemo-photothermal NPs hold great potential as a viable treatment option for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Liberação Controlada de Fármacos , Verde de Indocianina , Neoplasias Pulmonares , Nanopartículas , Paclitaxel , Nanomedicina Teranóstica , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Verde de Indocianina/química , Humanos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Concentração de Íons de Hidrogênio , Nanopartículas/química , Nanomedicina Teranóstica/métodos , Paclitaxel/química , Paclitaxel/farmacologia , Camundongos , Zeolitas/química , Raios Infravermelhos , Fototerapia/métodos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Células A549 , Estruturas Metalorgânicas/química , Camundongos Nus , Sistemas de Liberação de Medicamentos , Imidazóis
2.
Aging (Albany NY) ; 16(10): 8697-8716, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38738989

RESUMO

BACKGROUND: It is unknown what variables contribute to the formation and multiplication of low-grade gliomas (LGG). An emerging process of cell death is called cuproptosis. Our research aims to increase therapeutic options and gain a better understanding of the role that cuproptosis-related genes play in the physical characteristics of low-grade gliomas. METHODS: The TCGA database was utilized to find cuproptosis genes that may be used to develop LGG risk model. Cox analysis in three different formats: univariate, multivariate, and LASSO. The gene signature's independent predictive ability was assessed using ROC curves and Cox regression analysis based on overall survival. Use of CGGA data and nomogram model for external validation Immunohistochemistry, gene mutation, and functional enrichment analysis are also employed to clarify risk models' involvement. Next, we analyzed changes in the immunological microenvironment in the risk model and forecasted possible chemotherapeutic drugs to target each group. Finally, we validated the protein expression levels of cuproptosis-related genes using LGG and adjacent normal tissues in a small self-case-control study. RESULTS: This study developed a glioma predictive model based on five cuproptosis-associated genes. Compared to the high-risk group, the low-risk group's OS was significantly longer. The ROC curves showed high genetic signature performance in both groups. The signature-based categorisation was also linked to clinical characteristics and molecular subgroups. The prognosis of individuals with grade 2 or 3 glioma is also influenced by our risk model. Immunological testing revealed that the high-risk group had more immune cells and immunological function. The risk model also predicted immunotherapy and chemotherapy medication results. Also, this study confirmed that the expression of cuproptosis-related genes by Western blot. CONCLUSION: We developed a prediction model for LGG patients using genes associated with cuproptosis. With acceptable prediction performance, this risk model may effectively stratify the prognosis of glioma patients.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/mortalidade , Glioma/patologia , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Nomogramas , Gradação de Tumores , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
3.
Technol Health Care ; 32(4): 2293-2306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38759031

RESUMO

BACKGROUND: Rehabilitation assessment is a critical component of rehabilitation treatment. OBJECTIVE: This study focuses on a comprehensive analysis of patients' movement performance using the upper limb rehabilitation robot. It quantitatively assessed patients' motor control ability and constructed an intelligent grading model of functional impairments. These findings contribute to a deeper understanding of patients' motor ability and provide valuable insights for personalized rehabilitation interventions. METHODS: Patients at different Brunnstrom stages underwent rehabilitation training using the upper limb rehabilitation robot, and data on the distal movement positions of the patients' upper limbs were collected. A total of 22 assessment metrics related to movement efficiency, smoothness, and accuracy were extracted. The performance of these assessment metrics was measured using the Mann-Whitney U test and Pearson correlation analysis. Due to the issue of imbalanced sample categories, data augmentation was performed using the Synthetic Minority Over-sampling Technique (SMOTE) algorithm based on weighted sampling, and an intelligent grading model of functional impairment based on the Extreme Gradient Boosting Tree (XGBoost) algorithm was constructed. RESULTS: Sixteen assessment metrics were screened. These metrics were effectively normalized to their maximum values, enabling the derivation of quantitative assessment scores for motor control ability across the three dimensions through a weighted fusion approach. Notably, when applied to the data-enhanced dataset, the intelligent grading model exhibited remarkable improvement, achieving an accuracy rate exceeding 0.98. Moreover, significant enhancements were observed in terms of precision, recall, and f1-score. CONCLUSION: The research findings demonstrate that this study enables the quantitative assessment of patients' motor control ability and intelligent grading of functional impairments, thereby contributing to the efficiency enhancement of clinical rehabilitation assessment. Moreover, this method resolves the issues associated with the subjectivity and prolonged periods of traditional rehabilitation assessment methods.


Assuntos
Extremidade Superior , Humanos , Extremidade Superior/fisiopatologia , Extremidade Superior/fisiologia , Fenômenos Biomecânicos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Robótica/métodos , Algoritmos , Idoso , Movimento/fisiologia
4.
J Hazard Mater ; 471: 134402, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38688216

RESUMO

H2S is an extremely noxious impurity generated from nature and chemical industrial processes. High performing H2S adsorbents are required for chemical industry and environmental engineering. Herein, α-, γ-, and δ-MnO2 adsorbents with high sulfur capacity were synthesized through a continuous-flow approach with a microreactor system, achieving much higher efficiency than hydrothermal methods. The relationship between crystal structure and synthesis conditions such as residence time, reaction temperature, concentration of K+ in solution and reactant ratio is discussed. According to the H2S breakthrough tests at 150 °C, continuously prepared α-, γ-, and δ-MnO2 exhibited sulfur capacities of 669.5, 193.8 and 607.6 mg S/g sorbent, respectively, which was at a high level among the reported adsorbents. Such enhanced performance is related to the large surface area and mesopore volume, high reducibility, and a large number of oxygen species with high reactivity and mobility. Manganese sulfide and elemental sulfur were formed after desulfurization, which indicated the reaction consisted of two steps: redox and sulfidation of the sorbents. This study provides an innovative design strategy for the construction of nanomaterials with high H2S adsorption performances.

5.
JACS Au ; 4(3): 985-991, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559740

RESUMO

Often, trace impurities in a feed stream will cause failures in industrial applications. The efficient removal of such a trace impurity from industrial steams, however, is a daunting challenge due to the extremely small driving force for mass transfer. The issue lies in an activity-stability dilemma, that is, an ultrafine adsorbent that offers a high exposure of active sites is favorable for capturing species of a low concentration, but free-standing adsorptive species are susceptible to rapidly aggregating in working conditions, thus losing their intrinsic high activity. Confining ultrafine adsorbents in a porous matrix is a feasible solution to address this activity-stability dilemma. We herein demonstrate a proof of concept by encapsulating ZnO nanoclusters into a pure-silica MFI zeolite (ZnO@silicalite-1) for the ultradeep removal of H2S, a critical need in the purification of hydrogen for fuel cells. The Zn species and their interaction with silicalite-1 were thoroughly investigated by a collection of characterization techniques such as HADDF-STEM, UV-visible spectroscopy, DRIFTS, and 1H MAS NMR. The results show that the zeolite offers rich silanol defects, which enable the guest nanoclusters to be highly dispersed and anchored in the silicious matrix. The nanoclusters are present in two forms, Zn(OH)+ and ZnO, depending on the varying degrees of interaction with the silanol defects. The ultrafine nanoclusters exhibit an excellent desulfurization performance in terms of the adsorption rate and utilization. Furthermore, the ZnO@silicalite-1 adsorbents are remarkably stable against sintering at high temperatures, thus maintaining a high activity in multiple adsorption-regeneration cycles. The results demonstrate that the encapsulation of active metal oxide species into zeolite is a promising strategy to develop fast responsive and highly stable adsorbents for the ultradeep removal of trace impurities.

6.
Chemistry ; 30(30): e202400944, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38529828

RESUMO

Introducing CeO2 into Pd-based nanocatalysts for electrocatalytic reactions is a good way to solve the intermediate toxicity problem and improve the catalytic performance. Here we reported a simple strategy to synthesize the PdCuAg and CeO2 nanowires hybrid via a one-pot synthesis process under strong nanoconfined effect of specific surfactant as templates. Owing to the structural (ultrathin nanowires, abundant heterojunction/interfaces between metal and metal oxide) and compositional (Pd, Cu, Ag, CeO2) advantages, the hybrid showed significantly enhanced catalytic activity (6.06 A mgPd -1) and stability, accelerated reaction rate, and reduced activation energy toward electrocatalytic ethylene glycol oxidation reaction.

7.
Insights Imaging ; 15(1): 58, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411736

RESUMO

OBJECTIVES: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy characterized by progressive fibrofatty infiltration of atrial and ventricular myocardium resulting in adverse cardiac events. Atrial function has been increasingly recognized as prognostically important for cardiovascular disease. As the right atrial (RA) strain is a sensitive parameter to describe RA function, we aimed to analyze the prognostic value of the RA strain in ARVC. METHODS: RA strain parameters were derived from cardiac magnetic resonance (CMR) images of 105 participants with definite ARVC. The endpoint was defined as a combination of sudden cardiac death, survival cardiac arrest, and appropriate implantable cardioverter-defibrillator intervention. Cox regression and Kaplan-Meier survival analyses were performed to evaluate the association between RA strain parameters and endpoint. Concordance index (C index), net reclassification index (NRI), and integrated discrimination improvement (IDI) were calculated to assess the incremental value of RA strain in predicting the endpoint. RESULTS: After a median follow-up of 5 years, 36 (34.3%) reaching the endpoint displayed significantly reduced RA strain parameters. At Kaplan-Meier analysis, impaired RA reservoir (RARS) and booster strains (RABS) were associated with an increased risk of the endpoint. After adjusting for conventional risk factors, RARS (hazard ratio [HR], 0.956; p = 0.005) and RABS (HR, 0.906; p = 0.002) resulted as independent predictors for endpoint at Cox regression analyses. In addition, RARS and RABS improved prognostic value to clinical risk factors and CMR morphological and functional predictors (all p < 0.05). CONCLUSION: RARS and RABS were independent predictors for adverse cardiac events, which could provide incremental prognostic value for conventional predictors in ARVC. CRITICAL RELEVANCE STATEMENT: We evaluated the prognostic value of right atrial strain in ARVC patients and suggested cardiologists consider RA strain as a predictive parameter when evaluating the long-term outcome of ARVC patients in order to formulate better clinical therapy. KEY POINTS: • Patients with ARVC had significantly reduced RA strain and strain rates compared with healthy participants. • Participants with lower RA reservoir and booster stains were associated with a significantly higher risk of adverse cardiac events. • RA booster and reservoir strain provide incremental value to conventional parameters.

8.
Chem Commun (Camb) ; 60(8): 964-967, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165650

RESUMO

PdPtP nanodendrites were prepared by a post-phosphating method. Due to their well-designed structure and composition, the EOR activity of the PtPdP NDs is significantly increased to 14.3 A mgPd+Pt-1, which is a significant improvement compared to commercial Pd/C catalysts. In addition, stability tests demonstrated their excellent catalytic activity and structural durability.

9.
J Magn Reson Imaging ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38258534

RESUMO

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is characterized by progressive myocardial fibro-fatty infiltration accompanied by trabecular disarray. Traditionally, two-dimensional (2D) instead of 3D fractal dimension (FD) analysis has been used to evaluate trabecular disarray. However, the prognostic value of trabecular disorder assessed by 3D FD measurement remains unclear. PURPOSE: To investigate the prognostic value of right ventricular trabecular complexity in ACM patients using 3D FD analysis based on cardiac MR cine images. STUDY TYPE: Retrospective. POPULATION: 85 ACM patients (mean age: 45 ± 17 years, 52 male). FIELD STRENGTH/SEQUENCE: 3.0T/cine imaging, T2-short tau inversion recovery (T2-STIR), and late gadolinium enhancement (LGE). ASSESSMENT: Using cine images, RV (right ventricular) volumetric and functional parameters were obtained. RV trabecular complexity was measured with 3D fractal analysis by box-counting method to calculate 3D-FD. Cox and logistic regression models were established to evaluate the prognostic value of 3D-FD for major adverse cardiac events (MACE). STATISTICAL TESTS: Cox regression and logistic regression to explore the prognostic value of 3D-FD. C-index, time-dependent receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) to evaluate the incremental value of 3D-FD. Intraclass correlation coefficient for interobserver variability. P < 0.05 indicated statistical significance. RESULTS: 26 MACE were recorded during the 60 month follow-up (interquartile range: 48-67 months). RV 3D-FD significantly differed between ACM patients with MACE (2.67, interquartile range: 2.51 ~ 2.81) and without (2.52, interquartile range: 2.40 ~ 2.67) and was a significant independent risk factor for MACE (hazard ratio, 1.02; 95% confidence interval: 1.01, 1.04). In addition, prognostic model fitness was significantly improved after adding 3D-FD to RV global longitudinal strain, LV involvement, and 5-year risk score separately. DATA CONCLUSION: The myocardial trabecular complexity assessed through 3D FD analysis was found associated with MACE and provided incremental prognostic value beyond conventional ACM risk factors. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 1.

10.
Chempluschem ; 89(5): e202400010, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38238259

RESUMO

Considering the structural and compositional advantages of high-entropy alloy (HEA) as high-efficient electrocatalysts, we here present a facile method to prepare high-entropy alloy nanowires with seven elements in an aqueous solution. The as-synthesized PdPtCuAgAuPbCo nanowires possess dispersed one-dimensional morphology and exhibit enhanced electrocatalytic performance with the mass activity of 9.9 A mgPd+Pt -1 toward ethanol electrooxidation. The HEA nanowires also perform superior stability, resistance to CO poisoning, and good electrocatalytic activities toward other alcohols (e. g., ethylene glycol and methanol) oxidation. The synthesis strategy is easy to operate with low cost and has wide application prospects for preparing desired electrocatalysts for fuel cells.

11.
Eur Radiol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189980

RESUMO

OBJECTIVES: The present study aimed to investigate the incremental prognostic value of the right ventricular fractal dimension (FD), a novel marker of myocardial trabecular complexity by cardiac magnetic resonance (CMR) in patients with arrhythmogenic cardiomyopathy (ACM). METHODS: Consecutive patients with ACM undergoing CMR were followed up for major cardiac events, including sudden cardiac death, aborted cardiac arrest, and appropriate implantable cardioverter defibrillator intervention. Prognosis prediction was compared by Cox regression analysis. We established a multivariable model supplemented with RV FD and evaluated its discrimination by Harrell's C-statistic. We compared the category-free, continuous net reclassification improvement (cNRI) and integrated discrimination index (IDI) before and after the addition of FD. RESULTS: A total of 105 patients were prospectively included from three centers and followed up for a median of 60 (48, 66) months; experienced 36 major cardiac events were recorded. Trabecular FD displayed a strong unadjusted association with major cardiac events (p < 0.05). In the multivariable Cox regression analysis, RV maximal apical FD maintained an independent association with major cardiac events (hazard ratio, 1.31 (1.11-1.55), p < 0.002). The Hosmer-Lemeshow goodness of fit test displayed good fit (X2 = 0.68, p = 0.99). Diagnostic performance was significantly improved after the addition of RV maximal apical FD to the multivariable baseline model, and the continuous net reclassification improvement increased 21% (p = 0.001), and the integrated discrimination index improved 16% (p = 0.045). CONCLUSIONS: In patients with ACM, CMR-assessed myocardial trabecular complexity was independently correlated with adverse cardiovascular events and provided incremental prognostic value. CLINICAL RELEVANCE STATEMENT: The application of FD values for assessing RV myocardial trabeculae may become an accessible and promising parameter in monitoring and early diagnosis of risk factors for adverse cardiovascular events in patients with ACM. KEY POINTS: • Ventricular trabecular morphology, a novel quantitative marker by CMR, has been explored for the first time to determine the severity of ACM. • Patients with higher maximal apical fractal dimension of RV displayed significantly higher cumulative incidence of major cardiac events. • RV maximal apical FD was independently associated with major cardiac events and provided incremental prognostic value in patients with ACM.

12.
Exp Neurol ; 372: 114641, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38065231

RESUMO

This study was to explore the mechanism of ferroptosis and hypoxic-ischemic brain damage in neonatal rats. The neonatal rat hypoxic-ischemic brain damage (HIBD) model was established using the Rice-Vannucci method and treated with the ferroptosis inhibitor liproxstatin-1. Cognitive assessment was performed through absentee field experiments to confirm the successful establishment of the model. Brain tissue damage was evaluated by comparing regional cerebral blood flow and quantifying tissue staining. Neuronal cell morphological changes in the rats' cortical and hippocampal regions were observed using HE and Nissl staining. ELISA was performed to determine GPX4, GSH and ROS expression levels in the rats' brain tissues, and Western blotting to assess the expression levels of 4-HNE, GPX4, GSS, ACSL4, SLC7A11, SLC3A2, TFRC, FHC, FLC, HIF-1α, and Nrf2 proteins in rat brain tissues. Compared to the Sham group, the HIBD group exhibited a significant decrease in cerebral blood perfusion, reduced brain nerve cells, and disordered cell arrangement. The use of the ferroptosis inhibitor effectively improved brain tissue damage and preserved the shape and structure of nerve cells. The oxidative stress products ROS and 4-HNE in the brain tissue of the HIBD group increased significantly, while the expression of antioxidant indicators GPX4, GSH, SLC7A11, and GSS decreased significantly. Furthermore, the expression of iron metabolism-related proteins TFRC, FHC, and FLC increased significantly, whereas the expression of the ferroptosis-related transcription factors HIF-1α and Nrf2 decreased significantly. Treatment with liproxstatin-1 exhibited therapeutic effects on HIBD and downregulated tissue ferroptosis levels. This study shows the involvement of ferroptosis in hypoxic-ischemic brain damage in neonatal rats through the System Xc--GSH-GPX4 functional axis and iron metabolism pathway, with the HIF-1α and Nrf2 transcription factors identified as the regulators of ferroptosis involved in the HIBD process in neonatal rats.


Assuntos
Ferroptose , Hipóxia-Isquemia Encefálica , Ratos , Animais , Animais Recém-Nascidos , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Hipóxia-Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Ferro
13.
J Colloid Interface Sci ; 658: 879-888, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157612

RESUMO

Two-dimensional (2D) materials have garnered significant attention due to their distinctive physicochemical properties, with 2D noble metal nanodendrites being particularly intriguing in terms of their properties and functional prospects. However, the synthesis of ultrathin and highly branched gold nanodendrites (AuNDs) still poses challenges. In this study, we successfully achieved the synthesis of highly branched 2D AuNDs with a thickness of 4 nm by employing a carboxyl-functionalized C22-tailed surfactant along with the co-directing agent 2-mercaptonicotinic acid (2-MNA). The careful selection of specific thiol molecules such as 2-MNA is crucial for controlling the degree of branching and promoting the formation of ultrathin nanodendrites. Furthermore, we extended this method to synthesize alloy nanodendrites (AuAg NDs and AuCoAg NDs) using a similar approach. Due to their highly branched and ultrathin two-dimensional morphology, these prepared AuNDs exhibit excellent catalytic performance in the model reaction for 4-NP reduction. This thiol-induced synthesis strategy for AuNDs opens up new possibilities for designing other Au nanomaterials with an ultrathin morphology/structure.

14.
Chem Commun (Camb) ; 59(91): 13655, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37929816

RESUMO

Correction for 'Strengthening Pt/WOx interfacial interactions to increase the CO tolerance of Pt for hydrogen oxidation reaction' by Daojun Long et al., Chem. Commun., 2023, https://doi.org/10.1039/d3cc03990k.

15.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2693-2702, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37897276

RESUMO

Clarifying the effect of different maize straw returning methods on soil temperature is crucial for optimizing the management of farmland straw and the efficient utilization of heat resources in the black soil region of Northeast China. To investigate the impacts of straw returning methods on soil temperature, we conducted a field experiment with four treatments during 2018 and 2020, including plough tillage with straw returning (PTSR), rotary tillage with straw returning (RTSR), no-tillage with straw returning (NTSR), and a control treatment of conventional ridge tillage without straw returning (CT). We measured soil temperature and water content at the 5 cm, 15 cm and 30 cm soil layer, and the straw coverage rate during the 3-year maize growth period. We further analyzed the differences of soil temperature in different soil layer under different treatments, accumulated soil temperature and growing degree-days (GDD) above 10 ℃, daily dynamics of soil temperature, the production efficiency of air accumulated temperature among different treatments, and explored factors causing the difference of soil temperature and the production efficiency of air accumulated temperature. Our results showed that different treatments mainly affected soil temperature from the sowing to emergence stage (S-VE) of maize. The daily average soil temperature showed a trend of CT>PTSR>RTSR>NTSR. The differences of soil temperature under different treatments showed a decreasing trend as growth process advanced and soil depth increased. Compared with the CT treatment, soil temperature at 5 cm depth was decreased by 0.86, 1.84 and 3.50 ℃ for PTSR, RTSR, and NTSR treatments, respectively. NTSR significantly reduced the accumulated temperature of ≥10 ℃ in different soil layers and GDD. The accumulated temperature ≥ 10 ℃ at the 5, 15, and 30 cm soil layers decreased by 216.2, 222.7, and 165.1 ℃·d, and the GDD decreased by 201.9, 138.7 and 123.9 ℃·d, respectively. In addition, production efficiency of air accumulated temperature decreased by 9.7% to 15.6% for NTSR. Conclusively, PTSR and RTSR had significant impacts on topsoil temperature during the maize growing period from sowing to emergence, but did not affect the accumulated soil temperature and the production efficiency of air accumulated temperature. However, NTSR significantly reduced topsoil temperature and production efficiency of air accumulated temperature.


Assuntos
Agricultura , Solo , Agricultura/métodos , Zea mays , Temperatura , Triticum , China
16.
Chem Commun (Camb) ; 59(91): 13583-13586, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37861737

RESUMO

Here, the modulation of the Pt electronic structure by the formation of an amorphous WOx overlayer on Pt nanoparticles is proposed. The resulting Pt/WOx@NC electrode shows exceptional CO oxidation potential (0.24 V vs. RHE) in aqueous test, and the corresponding membrane electrode assembly (MEA) steadily generates power in fuel cells fed with H2 gas containing 1000 ppm CO.

17.
Exp Neurol ; 370: 114568, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37820939

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is an important cause of disability and death. TBI leads to multiple forms of nerve cell death including ferroptosis due to iron-dependent lipid peroxidation. Anacardic acid (AA) is a natural component extracted from cashew nut shells, which has been reported to have neuroprotective effects in traumatic brain injury. We investigated whether AA has an anti-ferroptosis effect in TBI. METHODS: We used the Feeney free-fall impact method to construct a TBI model to investigate the effect of AA on ferroptosis caused by TBI, in which Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, served as a positive control group. We first identified the therapeutic effect of AA on TBI through modified neurological severity score (mNSS) and determined the appropriate concentration. Secondly, we investigated the effect of AA on the expression level of the key protein of ferroptosis by Western blotting and immunohistochemistry. Then the effect of AA on nerve tissue injury and nerve function improvement was verified. Finally, enzym-linked immunosorbent assay (ELISA) was used to verify that AA could reduce inflammation after TBI. RESULTS: We found the intensely inhibitory effect of AA on ferroptosis, which is in parallel with the results obtained after Fer-1 treatment. In addition, AA and Fer-1 mitigated TBI-mediated tissue defects, destruction of the blood-brain barrier, and neurodegeneration. Novel object recognition (NOR), mNSS and water maze test showed that AA could significantly reduce the impairment of neural function and behavioral cognitive ability caused by TBI. Finally, we also demonstrated that AA has not only an anti-ferroptosis effect, but also an anti-inflammation effect. CONCLUSIONS: AA can reduce the neurological impairment and behavioral cognitive impairment caused by TBI through the dual effect of anti-ferroptosis and anti-inflammation.


Assuntos
Lesões Encefálicas Traumáticas , Ferroptose , Humanos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Ácidos Anacárdicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico
18.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1853-1861, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37694469

RESUMO

We examined the effects of different tillage practices on plough layer soil structure and organic carbon stabilization in black soil farmland with a long-term positioning platform. The wet-sieving method and infrared spectroscopy method were used to investigate the impacts of conventional tillage (CT), no-tillage (NT), sub-soiling tillage (ST), and moldboard plowing tillage (MP) on soil aggregates distribution and organic carbon characteristics in 0-40 cm soil layers. Compared to CT, both NT and ST treatments significantly increased the proportion of large macroaggregates (>2 mm) in the topsoil layer (0-20 cm)and that of small macroaggregates (0.25-2 mm) in the subsoil layer (20-40 cm) for NT, ST, and MP. NT, ST, and MP treatments resulted in higher mean weight dia-meter (MWD) and mean geometric diameter (GMD) of soil aggregates in both the topsoil and subsoil layers. NT treatment improved organic carbon contents in bulk soil and large macroaggregates in the topsoil layer, while ST and MP enhanced organic carbon contents in bulk soil and large macroaggregates in the subsoil layer. The contribution rate of small macroaggregates organic carbon content to the total was between 68.9% and 83.4%. Furthermore, the organic carbon chemical stabilization of soil body and aggregates increased in the topsoil and subsoil layers under NT treatment compared to others. The MWD had a positive correlation with the organic carbon content and chemical stability of soil body and small macroaggregates. These findings offered a theoretical basis for understanding the impacts of different tillage practices on the stability of soil aggregate and organic carbon in black soil region.


Assuntos
Carbono , Solo , Fazendas
19.
Sci Rep ; 13(1): 8332, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221287

RESUMO

The effects of different tillage management practices on the soil aggregates, soil carbon stock (STCS), and soil nitrogen stock (STNS) are key issues in agricultural research. We conducted an 8-year field experiment to evaluate the effects of different tillage methods: stubble cleaning and ridging (CK), no-tillage with stubble retention (NT), plow tillage (PT), and width lines (WL) on soil aggregates, STCS, and STNS in the black soil corn continuous cropping area of Northeast China. Different tillage methods predominantly affected the soil aggregates in the 2-0.25 mm and 0.25-0.053 mm size classes. The PT methods increased the proportion of macroaggregates and improved the quality of the soil aggregates. PT methods significantly increased the soil organic carbon content at the 0-30 cm layer by changing the number of soil macroaggregates. The PT practices are better strategies for enhancing soil carbon sinks, and the WL method increased the total amount of N in the soil pool. Our results suggest that the PT and WL methods are the best strategies for improving the quality of soil aggregates and preventing/reducing depletion of soil C and N in a black soil area of Northeast China.

20.
Small ; 19(26): e2208077, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36960487

RESUMO

Surface modification of electrocatalysts to obtain new or improved electrocatalytic performance is currently the main strategy for designing advanced nanocatalysts. In this work, highly dispersed amorphous molybdenum trisulfide-anchored Platinum nanodendrites (denoted as Pt-a-MoS3  NDs) are developed as efficient hydrogen evolution electrocatalysts. The formation mechanism of spontaneous in situ polymerization MoS4 2- into a-MoS3 on Pt surface is discussed in detail. It is verified that the highly dispersed a-MoS3 enhances the electrocatalytic activity of Pt catalysts under both acidic and alkaline conditions. The potentials at the current density of 10 mA cm-2 (η10 ) in 0.5 m sulfuric acid (H2 SO4 ) and 1 m potassium hydroxide (KOH) electrolyte are -11.5 and -16.3 mV, respectively, which is significantly lower than that of commercial Pt/C (-20.2 mV and -30.7 mV). This study demonstrates that such high activity benefits from the interface between highly dispersed a-MoS3 and Pt sites, which act as the preferred adsorption sites for the efficient conversion of hydrion (H+ ) to hydrogen (H2 ). Additionally, the anchoring of highly dispersed clusters to Pt substrate greatly enhances the corresponding electrocatalytic stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...