Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37998944

RESUMO

The cross-linking point of a conventional chemical cross-linking agent is fixed. Therefore, gels that are prepared with a conventional cross-linking agent have poor deformability, strength, shear resistance, and further properties. Some researchers have prepared a new cross-linking agent using cyclodextrin (CD). In a polyrotaxane cross-linking agent, the cross-linking points can slide freely along the molecule chain. The special "slide ring" structure can provide better elongation, strength, and other properties to gels, which can effectively expand the application of the gel's materials. This paper summarizes the preparation methods and applications from different types of CD and compares the improvements of properties (swelling, viscoelastic properties, etc.). In addition, the current results of our group are presented, and some ideas are provided for the development of polyrotaxane cross-linking agents.

2.
Stem Cells Int ; 2017: 3738071, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337222

RESUMO

Mesenchymal stem cells (MSCs) can affect the microenvironment of a wound and thereby accelerate wound healing. Wnt proteins act as key mediators of skin development and participate in the formation of skin appendages such as hair. The mechanisms of action of MSCs and Wnt proteins on skin wounds are largely unknown. Here, we prepared a Wnt7a-containing conditioned medium (Wnt-CM) from the supernatant of cultured human umbilical cord-MSCs (UC-MSCs) overexpressing Wnt7a in order to examine the effects of this CM on cutaneous healing. Our results revealed that Wnt-CM can accelerate wound closure and induce regeneration of hair follicles. Meanwhile, Wnt-CM enhanced expression of extracellular matrix (ECM) components and cell migration of fibroblasts but inhibited the migratory ability and expression of K6 and K16 in keratinocytes by enhancing expression of c-Myc. However, we found that the CM of fibroblasts treated with Wnt-CM (HFWnt-CM-CM) can also promote wound repair and keratinocyte migration; but there was no increase in the number of hair follicles of regeneration. These data indicate that Wnt7a and UC-MSCs have synergistic effects: they can accelerate wound repair and induce hair regeneration via cellular communication in the wound microenvironment. Thus, this study opens up new avenues of research on the mechanisms underlying wound repair.

3.
J Transl Med ; 13: 308, 2015 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-26386558

RESUMO

BACKGROUND: Within the last few years, it has become evident that LPS-preconditioned mesenchymal stromal cells (LPS pre-MSCs) show enhanced paracrine effects, including increased trophic support and improved regenerative and repair properties. MSCs may release large amounts of exosomes for cell-to-cell communication and maintain a dynamic and homeostatic microenvironment for tissue repair. The present study assesses the therapeutic efficacy and mechanisms of LPS-preconditioned MSC-derived exosomes (LPS pre-Exo) for chronic inflammation and wound healing. METHODS: We extracted exosomes from the supernatant of LPS pre-MSCs using a gradient centrifugation method. In vitro, THP-1 cells were cultured with high glucose (HG, 30 mM) as an inflammatory model and treated with LPS pre-Exo for 48 h. The expression of inflammation-related cytokines was detected by real-time RT-PCR, and the distribution of macrophage subtype was measured by immunofluorescence. Next, the miRNA expression profiles of LPS pre-Exo were evaluated using miRNA microarray analysis. The molecular signaling pathway responsible for the regenerative potential was identified by western blotting. In vivo, we established a cutaneous wound model in streptozotocin-induced diabetic rats, and LPS pre-Exo were injected dispersively into the wound edge. The curative effects of LPS pre-Exo on inflammation and wound healing were observed and evaluated. RESULTS: LPS pre-Exo have a better ability than untreated MSC-derived exosomes (un-Exo) to modulate the balance of macrophages due to their upregulation of the expression of anti-inflammatory cytokines and promotion of M2 macrophage activation. Microarray analysis of LPS pre-Exo identified the unique expression of let-7b compared with un-Exo, and the let-7b/TLR4 pathway served as potential contributor to macrophage polarization and inflammatory ablation. Further investigation of the mechanisms that control let-7b expression demonstrated that a TLR4/NF-κB/STAT3/AKT regulatory signaling pathway plays a critical role in the regulation of macrophage plasticity. Knockdown of AKT in THP-1 cells similarly abolished the immunomodulatory effect of LPS pre-Exo. In vivo, LPS pre-Exo greatly alleviated inflammation and enhanced diabetic cutaneous wound healing. CONCLUSION: LPS pre-Exo may have improved regulatory abilities for macrophage polarization and resolution of chronic inflammation by shuttling let-7b, and these exosomes carry much immunotherapeutic potential for wound healing.


Assuntos
Exossomos/metabolismo , Inflamação/terapia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Células-Tronco Mesenquimais/efeitos dos fármacos , MicroRNAs/metabolismo , Linhagem Celular , Humanos , Técnicas In Vitro , Inflamação/patologia , Células-Tronco Mesenquimais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...