Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 639: 122952, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37054926

RESUMO

Exparel is a bupivacaine multivesicular liposomes (MVLs) formulation developed based on the DepoFoam technology. The complex composition and the unique structure of MVLs pose challenges to the development and assessment of generic versions. In the present work, we developed a panel of analytical methods to characterize Exparel with respect to particle size, drug and lipid content, residual solvents, and pH. In addition, an accelerated in vitro drug release assay was developed using a rotator-facilitated, sample-and-separate experimental setup. The proposed method could achieve over 80% of bupivacaine release within 24 h, which could potentially be used for formulation comparison and quality control purposes. The batch-to-batch variability of Exparel was examined by the established analytical methods. Four different batches of Exparel showed good batch-to-batch consistency in drug content, particle size, pH, and in vitro drug release kinetics. However, slight variation in lipid contents were observed.


Assuntos
Bupivacaína , Lipossomos , Lipossomos/química , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Lipídeos
2.
Int J Pharm ; 631: 122430, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36493968

RESUMO

Abuse of opioid drug products is a national health crisis in the US. To deter abuse, a number of drug products with abuse-deterrent (AD) properties have been approved by the US Food and Drug Administration (FDA). For abuse deterrence, it is critical to maintain the AD properties during the product shelf life. However, no information on the stability of AD properties during product shelf life is publicly available. In this study, stability of AD properties of surrogate AD formulation (ADF) of opioid active pharmaceutical ingredients (APIs) were studied. Surrogate extended release (ER) AD tablets were prepared by direct compression using Diltiazem HCl (model drug), polyethylene oxide (PEO WSR 301) polymer and magnesium stearate followed by curing at 70 °C for 30 mins. The stability studies were conducted at 25 °C/60 % RH and 40 °C/75 % RH storage conditions for 12 months (M) and 6 months (M), respectively. In vitro characterization and evaluation of AD properties of tablets were performed. As anticipated, the curing process increased the crushing strength of the tablets. However, the tablets could still be manipulated and compromised leading to an enhancement in the amount of drug extracted in solvents (e.g., water, alcohol), regardless of extraction temperature as well as tablet storage condition and time. Furthermore, the granule particle size as well as viscosity in water of manipulated samples were found to be lower for tablets stored at 25 °C/60 % RH or 40 °C/75 % RH for 12 M or 3 M/6M, respectively. The changes in AD properties eased the syringeability of hydrated samples and ultimately led to the withdrawal of higher amounts of drug into the syringe, thereby, impacting the abuse deterrence potential of the formulation by an IV route. These data demonstrated that the stability of AD properties (i.e., granule particle size, viscosity and syringeability-injectability) of PEO-based tablets was dependent on the storage condition. In conclusion, the design of AD formulation and setting of product quality profile should take into consideration the stability of AD properties during the product shelf life.


Assuntos
Formulações de Dissuasão de Abuso , Transtornos Relacionados ao Uso de Opioides , Humanos , Analgésicos Opioides , Comprimidos , Polietilenoglicóis , Água , Preparações de Ação Retardada
3.
Ultrasonics ; 127: 106827, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36063769

RESUMO

We investigated the effects of UCA gas bubble size distribution and concentration on the generated ultrasound echogenicity signal. Gas bubble size characterization using Coulter Counter and cryogenic-SEM revealed the hollow structure and rare presence of microbubbles >10 µm in a commercial UCA product, Lumason™. Volume-weighed size and concentration were observed to be more sensitive to changes in UCA bubble stability than number-weighted size and concentration. Size distribution measurements showed that the force (e.g., shaking/agitation energy) used to redisperse the sample did not affect the size distribution, concentration, or echogenicity of the UCA sample. The ultrasound backscattering coefficient (BSC) of size fractionated and serial diluted microbubbles showed that the echogenicity signal correlates most with UCA bubble concentration, especially volume-weighted concentration. Findings from this study may be used to support demonstrating the equivalence of a generic UCA product to the reference listed drug.


Assuntos
Meios de Contraste , Microbolhas , Ultrassonografia
4.
Int J Pharm ; 628: 122273, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36228881

RESUMO

Pharmaceutical toxicity evaluations often use in vitro systems involving primary cells, cell lines or red blood cells (RBCs). Cell-based analyses ('bioassays') can be cumbersome and typically rely on hard-to-standardize biological materials. Amphotericin B (AmB) toxicity evaluations are primarily based on potassium release from RBCs and share these limitations. This study evaluates the potential substitution of two physicochemical AmB toxicity approaches for the bioassay: Ultraviolet-visible spectroscopy (UV-vis) and in vitro drug release kinetics. UV-vis spectral analyses indicated that liposomal AmB's (L-AmB) main peak position (λmax) and peak ratio (OD346/OD322) are potential toxicity surrogates. Similarly, two first-order release parameters derived from USP-4 in vitro drug release analyses also provided linear relationships with toxicity. These were the initial, overall drug release rate and the ratio of loose to tight AmB pools. Positive slopes and high correlation coefficients (R2 > 0.9) characterized all interrelations between physicochemical parameters and toxicity. These tests converted the manufacturing variables' nonlinear (i.e., curvilinear) relationships with in vitro toxicity to linear responses. Three different toxicity attenuation approaches (2 manufacturing, 1 formulation), covering formulation composition and process aspects, support this approach's universality. These data suggest that one or more spectral and kinetic physicochemical tests can be surrogates for L-AmB in vitro toxicity testing.


Assuntos
Anfotericina B , Antifúngicos , Anfotericina B/toxicidade , Anfotericina B/química , Antifúngicos/toxicidade , Antifúngicos/química , Lipossomos , Liberação Controlada de Fármacos
5.
Asian J Pharm Sci ; 17(4): 544-556, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36105314

RESUMO

Amphotericin B (AmB) is an amphiphilic drug commonly formulated in liposomes and administered intravenously to treat systemic fungal infections. Recent studies on the liposomal drug product have shed light on the AmB aggregation status in the bilayer, which heat treatment (curing) modifies. Although toxicity was found related to aggregation status - loose aggregates significantly more toxic than tight aggregates - the precise mechanism linking aggregation and toxicity was not well understood. This study directly measured drug release rate from various AmB liposomal preparations made with modified curing protocols to evaluate correlations among drug aggregation state, drug release, and in vitro toxicity. UV-Vis spectroscopy of these products detected unique curing-induced changes in the UV spectral features: a ∼25 nm blue-shift of the main absorption peak (λmax) in aqueous buffer and a decrease in the OD346/OD322 ratio upon thermal curing, reflecting tighter aggregation. In vitro release testing (IVRT) data showed, by applying and fitting first-order release kinetic models for one or two pools, that curing impacts two significant changes: a 3-5-fold drop in the overall drug release rate and a ten-fold decrease in the ratio between the loosely aggregated and the tightly aggregated, more thermodynamically stable drug pool. The kinetic data thus corroborated the trend independently deduced from the UV-Vis spectral data. The in vitro toxicity assay indicated a decreased toxicity with curing, as shown by the significantly increased concentration, causing half-maximal potassium release (TC50). The data suggest that the release of AmB requires dissociation of the tight complexes within the bilayer and that the reduced toxicity relates to this slower rate of dissociation. This study demonstrates the relationship between AmB aggregation status within the lipid bilayer and drug release (directly measured rate constants), providing a mechanistic link between aggregation status and in vitro toxicity in the liposomal formulations.

6.
Pharmaceutics ; 14(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35890277

RESUMO

We generated two IgG1-like bispecific antibodies (BsAbs) with different molecular formats, symmetrical DVD-Ig and asymmetrical knob-in-hole (KIH), targeting the same antigens, EGFR and PD-L1 (designated as anti-EGFR/PD-L1). We performed the physiochemical and biological characterization of these two formats of anti-EGFR/PD-L1 BsAbs and compared some key quality attributes and biological activities of these two formats of BsAbs. Physiochemical binding characterization data demonstrated that both formats bound EGFR and PD-L1. However, the binding affinity of the KIH format was weaker than the DVD-Ig format in Biacore binding assays. In contrast, both DVD-Ig and KIH BsAbs had similar ELISA and cell surface binding activities, comparable to mAbs. Triple-negative breast cancer (TNBC) cells and a xenograft model were used to test the potency of BsAbs and other biological activities. Results showed that anti-EGFR/PD-L1 BsAbs exhibited in vitro and in vivo antitumor proliferation activity, but there was a difference in the potencies of the respective BsAb formats (DVD-Ig and KIH) when different cells or assays were used. This study provides evidence that the potency of the BsAbs targeting the same antigens can be affected by the respective molecular features, and selection of appropriate cell lines and assays is critically important for the assay development and potency testing of BsAbs.

7.
J Immunotoxicol ; 19(1): 61-73, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35901199

RESUMO

Nickel titanium (NiTi, or Nitinol) alloy is used in several biomedical applications, including cardiac, peripheral vascular, and fallopian tube stents. There are significant biocompatibility issues of metallic implants to nickel ions and nano-/micro-sized alloy particles. Our laboratories have recently shown that microscale CoCr wear particles from metal-on-metal hips crosslink with the innate immune signaling Toll-like receptor 4 (TLR4), prompting downstream signaling that results in interleukin (IL)-1ß and IL-8 gene expression. In vivo, NiTi alloy can also generate wear particles on the nanoscale (NP) that have thus far not been studied for their potential to induce inflammation and angiogenesis that can, in turn, contribute to implant (e.g. stent) failure. Earlier studies by others demonstrated that nickel could induce contact hypersensitivity by crosslinking the human, but not the mouse, TLR4. In the present work, it is demonstrated that NiCl2 ions and NiTi nanoparticles induce pro-inflammatory and pro-angiogenic cytokine/chemokine expression in human endothelial and monocyte cell lines in vitro. These observations prompt concerns about potential mechanisms for stent failure. The data here showed a direct correlation between intracellular uptake of Ni2+ and generation of reactive oxygen species. To determine a role for nickel and NiTi nanoparticles in inducing angiogenesis in vivo, 1-cm silicone angioreactors were implanted subcutaneously into athymic (T-cell-deficient) nude mice. The angioreactors contained Matrigel (a gelatinous protein mixture that resembles extracellular matrix) in addition to one of the following: PBS (negative control), VEGF/FGF-2 (positive control), NiCl2, or NiTi NP. The implantation of angioreactors represents a potential tool for quantification of angiogenic potentials of medical device-derived particles and ions in vivo. By this approach, NiTi NP were found to be markedly angiogenic, while Ni2+ was less-so. The angioreactors may provide a powerful tool to examine if debris shed from medical devices may promote untoward biological effects.


Assuntos
Nanopartículas Metálicas , Níquel , Ligas , Animais , Humanos , Inflamação , Íons , Camundongos , Camundongos Nus , Nanopartículas , Níquel/farmacologia , Titânio/efeitos adversos , Receptor 4 Toll-Like
8.
Mol Pharm ; 19(7): 2142-2150, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35657300

RESUMO

An oil-in-water (o/w) nanoemulsion (NE), composed of oil globules, stabilized by a surfactant, and dispersed in an aqueous phase, is increasingly developed in complex drug formulation. Kinetically stable NEs are used to formulate hydrophobic drugs and typically provide higher dosage strengths and better content uniformity. However, little is known accurately about drug distribution in its multiphase solution, especially for the possible drug presence in the surfactant (s) phase, the interface layer between the dispersed oil (o) and the continuous water (w) phases. Here, high-resolution 19F quantitative NMR spectroscopy was applied directly and noninvasively on an o/w NE drug product containing difluprednate (DFPN). The well-resolved 19F peaks of DFPN depended on the shielding molecules in each phase, which revealed mass-balanced DFPN distribution in multiple phases of (w), (s), and (o) of NE globules at a quantity of 1.8 ± 0.1, 35 ± 2, and 59 ± 3% per labeled content, respectively. Furthermore, the dilution-dependent 19F peak line broadening and shift suggested a millisecond dynamic exchange between the NE and the less-noticed smaller but thermodynamically stable microemulsion (ME) globules in NE solution. The high-resolution NMR result revealed that the drug availability could be quickly achieved using an o/w NE formulation because of the drug multiphase distribution and the ME-assisted fast drug exchange among globules.


Assuntos
Tensoativos , Água , Emulsões/química , Interações Hidrofóbicas e Hidrofílicas , Tensoativos/química , Água/química
9.
Toxicol Sci ; 188(2): 261-275, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35708658

RESUMO

Ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) have been investigated for biomedical applications, including novel contrast agents, magnetic tracers for tumor imaging, targeted drug delivery vehicles, and magneto-mechanical actuators for hyperthermia and thrombolysis. Despite significant progress, recent clinical reports have raised concerns regarding USPION safety related to endothelial cell dysfunction; however, there is limited information on factors contributing to these clinical responses. The influence of USPION surface chemistry on nanoparticle interactions with proteins may impact endothelial cell function leading to adverse responses. Therefore, the goal of this study was to assess the effects of carboxyl-functionalized USPION (CU) or amine-functionalized USPION (AU) (approximately 30 nm diameter) on biological responses in human coronary artery endothelial cells. Increased protein adsorption was observed for AU compared with CU after exposure to serum proteins. Exposure to CU, but not AU, resulted in a concentration-dependent decrease in cell viability and perinuclear accumulation inside cytoplasmic vesicles. Internalization of CU was correlated with endothelial cell functional changes under non-cytotoxic conditions, as evidenced by a marked decreased expression of endothelial-specific adhesion proteins (eg, vascular endothelial-cadherin and platelet endothelial cell adhesion molecule-1) and increased endothelial permeability. Evaluation of downstream signaling indicated endothelial permeability is associated with actin cytoskeleton remodeling, possibly elicited by intracellular events involving reactive oxygen species, calcium ions, and the nanoparticle cellular uptake pathway. This study demonstrated that USPION surface chemistry significantly impacts protein adsorption and endothelial cell uptake, viability, and barrier function. This information will advance the current toxicological profile of USPION and improve development, safety assessment, and clinical outcomes of USPION-enabled medical products.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Células Endoteliais/metabolismo , Compostos Férricos/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Coroa de Proteína/metabolismo
10.
Curr Protoc ; 2(4): e406, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35384403

RESUMO

The physicochemical properties of complex drug formulations, including liposomes, suspensions, and emulsions, are important for understanding drug release mechanisms, quality control, and regulatory assessment. It is ideal to characterize these complex drug formulations in their native hydrated state. This article describes the characterization of complex drug formulations in a frozen-hydrated state using cryogenic scanning electron microscopy (cryo-SEM). In comparison to other techniques, such as optical microscopy or room-temperature scanning electron microscopy, cryo-SEM combines the advantage of studying hydrated samples with high-resolution imaging capability. Detailed information regarding cryo-fixation, cryo-fracture, freeze-etching, sputter-coating, and cryo-SEM imaging is included in this article. A multivesicular liposomal complex drug formulation is used to illustrate the impact of different cryogenic sample preparation conditions. In addition to drug formulations, this approach can also be applied to biological samples (e.g., cells, bacteria) and soft-matter samples (e.g., hydrogels). © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Cryo-fixation to preserve the native structure of samples using planchettes Alternate Protocol: Cryo-fixation to preserve the native structure of biological samples on sapphire disks Basic Protocol 2: Sample preparation for cross-sectional cryo-SEM imaging Basic Protocol 3: Cryo-SEM imaging and microanalysis.


Assuntos
Microscopia Eletrônica de Varredura , Estudos Transversais , Microscopia Crioeletrônica/métodos , Composição de Medicamentos , Congelamento
11.
ACS Biomater Sci Eng ; 8(3): 939-963, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35171560

RESUMO

The developers of medical devices evaluate the biocompatibility of their device prior to FDA's review and subsequent introduction to the market. Chemical characterization, described in ISO 10993-18:2020, can generate information for toxicological risk assessment and is an alternative approach for addressing some biocompatibility end points (e.g., systemic toxicity, genotoxicity, carcinogenicity, reproductive/developmental toxicity) that can reduce the time and cost of testing and the need for animal testing. Additionally, chemical characterization can be used to determine whether modifications to the materials and manufacturing processes alter the chemistry of a patient-contacting device to an extent that could impact device safety. Extractables testing is one approach to chemical characterization that employs combinations of non-targeted analysis, non-targeted screening, and/or targeted analysis to establish the identities and quantities of the various chemical constituents that can be released from a device. Due to the difficulty in obtaining a priori information on all the constituents in finished devices, information generation strategies in the form of analytical chemistry testing are often used. Identified and quantified extractables are then assessed using toxicological risk assessment approaches to determine if reported quantities are sufficiently low to overcome the need for further chemical analysis, biological evaluation of select end points, or risk control. For extractables studies to be useful as a screening tool, comprehensive and reliable non-targeted methods are needed. Although non-targeted methods have been adopted by many laboratories, they are laboratory-specific and require expensive analytical instruments and advanced technical expertise to perform. In this Perspective, we describe the elements of extractables studies and provide an overview of the current practices, identified gaps, and emerging practices that may be adopted on a wider scale in the future. This Perspective is outlined according to the steps of an extractables study: information gathering, extraction, extract sample processing, system selection, qualification, quantification, and identification.


Assuntos
Contaminação de Medicamentos , Medição de Risco , Animais , Contaminação de Medicamentos/prevenção & controle , Humanos
12.
FEBS Open Bio ; 11(10): 2727-2739, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375508

RESUMO

Mycoplasma hyorhinis (M. hyorhinis) lacks a cell wall and resists multiple antibiotics. We describe here the striking > 90% inhibitory effect of hemin, a natural inducer of the cytoprotective enzyme heme oxygenase-1 (HO-1), on M. hyorhinis replication in chronically infected LNCaP prostate cancer cells. The role of HO-1 in interrupting M. hyorhinis replication was confirmed by HO-1-specific siRNA suppression of hemin-induced HO-1 protein expression, which increased intracellular M. hyorhinis DNA levels in LNCaP cells. Proteomic analysis and transmission electron microscopy of hemin-treated cells confirmed the complete absence of M. hyorhinis proteins and intact microorganisms, respectively, strongly supporting these findings. Our study is the first to our knowledge suggesting therapeutic potential for activated HO-1 in cellular innate responses against mycoplasma infection.


Assuntos
Mycoplasma hyorhinis , Neoplasias da Próstata , Heme Oxigenase-1/metabolismo , Hemina/metabolismo , Hemina/farmacologia , Humanos , Masculino , Mycoplasma hyorhinis/metabolismo , Proteômica
13.
Int J Pharm ; 598: 120401, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636327

RESUMO

The current study demonstrated that the presence of excipients can interfere with the measurement of particle size distribution (PSD), a critical quality attribute of ophthalmic suspensions, by laser diffraction (LD) and that a placebo background subtraction approach can eliminate the impact of excipients on the PSD measurement. Commercially available loteprednol etabonate and brinzolamide ophthalmic suspensions were used as model suspensions. The impact of excipients in these formulations on the LD measurements was determined using a one-factor-at-a-time experimental design approach, using National Institute of Standards and Technology (NIST) traceable polystyrene particle size standards as references. Among the evaluated excipients, polymers containing polyacrylic acid were found to interfere with the PSD analysis by creating the LD signals correspond to particles ranging from a few micrometers to a hundred micrometers in size. As a result, the measured PSD of active pharmaceutical ingredient (API) particles in the formulation overlapped with or superimposed on the excipient PSD signal, leading to erroneous interpretation of the API particle size. Additionally, dispersion of brinzolamide particles in unsaturated solutions led to rapid dissolution of brinzolamide particles during the measurement, resulting in underestimation of the particle size range. Here, a placebo background subtraction approach was developed to eliminate the interference of the excipients. This newly developed LD method was also evaluated using orthogonal methods, including polarized light microscopy and scanning electron microscopy (SEM). The strategy used in this study to eliminate the interference of excipients may also be useful for other heterogeneous dispersions where excipient interference may be of concern.


Assuntos
Excipientes , Lasers , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Suspensões
14.
Int J Pharm ; 588: 119761, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32795488

RESUMO

The quality of an ophthalmic suspension is crucial for its in vivo performance, and often impact product's effectiveness. An in-depth understanding of critical quality attributes (CQAs) of ophthalmic suspensions such as particle size distribution (PSD) and rheology, as well as the impact of these CQAs on product performance are important for successful product development, quality control, and regulatory approval. This study employed brinzolamide ophthalmic suspension, 1%, as a model ophthalmic product, and six batches were manufactured using an innovative planetary centrifugal milling (PCM) process. Three batches were manufactured to have distinctly different PSD. These three batches had qualitatively (Q1) and quantitatively (Q2) the same composition as the model drug product (i.e., Azopt), while the differences in PSD were introduced by changing only the manufacturing process parameters. On the other hand, changes in rheology were introduced by altering the input level of the viscosity enhancing polymer in the formulation. A systematic approach was employed to understand the relation between manufacturing process parameters, CQAs, and in vitro product performance. Among the evaluated CQAs, PSD, rheology, surface tension, and drug dissolution were found more sensitive to the changes in the manufacturing processes. Most notably, we developed a rapid dissolution method (completed within minutes) employing in-situ fiber optic UV dissolution system. This novel dissolution method mimics the environmental conditions of the eye such as dissolution under "non-sink" condition and under high shear (from blinking). The method was highly discriminatory to differences in the PSD in the suspension. This study also revealed an important relation between the PSD of the suspension and its rheology which originated as a result of an interaction at the molecular level between the solid drug particles and the viscosity enhancing polymers. These findings underscore the need to evaluate CQAs of the ophthalmic suspensions in concert rather than separately when comparing ophthalmic drug products and product performance.


Assuntos
Sulfonamidas , Tiazinas , Tamanho da Partícula , Solubilidade , Suspensões
15.
J Mater Chem B ; 8(6): 1191-1201, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31967629

RESUMO

Manganese oxide nanoparticles (MnOx NPs) have been suggested to possess several enzyme-like activities. However, studies often used either color change or fluorescence to determine the catalytic activity. Despite the simplicity and sensitivity of these probes, these methods may give distracting artifacts or not reflect the catalytic activities in biological systems. To address this issue, herein, we used electron spin resonance (ESR) spectroscopy, a technique proven effective in identifying and quantifying the free radicals produced/scavenged in nanomaterial-catalyzed reactions, to systematically evaluate the catalytic activities of three MnOx NPs (MnO2, Mn2O3, and Mn3O4 NPs) towards biologically relevant antioxidants (ascorbate and glutathione (GSH)) and reactive oxygen species (ROS) (hydrogen peroxide (H2O2), superoxide anion, and hydroxyl radical). We found that all three MnOx NPs possess both pro- and anti-oxidant activities, including oxidase-, catalase-, and superoxide dismutase (SOD)-like activities but without peroxidase-like or hydroxyl radical scavenging activity. In addition, there are differences among these MnOx NPs in their catalytic activities towards different reactions. Mn2O3 shows the strongest ascorbate oxidation activity, followed by MnO2 and Mn3O4, while Mn3O4 shows the strongest oxidation efficiency towards GSH compared to Mn2O3 and MnO2. In the catalyzed decomposition of H2O2, MnO2 NPs show higher efficiency in the generation of molecular oxygen than Mn2O3 or Mn3O4. Cellular studies indicate that all three MnOx NPs induced concentration-dependent decreases in the cell viability, with Mn3O4 > Mn3O2 > MnO2. At lower concentrations (<100 µM), consistent with the enzyme-like activities detected in solution, all three NPs significantly decreased H2O2-induced cytotoxicity in Caco-2 cells. Our study determined the multi-enzymatic activities of MnOx NPs and exhibited differences among MnOx NPs of different valences in their enzyme-like activities and their biological implications; these results provide valuable information for safe and efficient applications of MnOx NPs as ROS-scavenging biomedical nanomaterials.


Assuntos
Antioxidantes/farmacologia , Compostos de Manganês/farmacologia , Óxidos/farmacologia , Antioxidantes/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Compostos de Manganês/química , Oxirredução , Óxidos/química , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
16.
Int J Pharm ; 577: 118998, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31935473

RESUMO

Propofol is intravenously administered oil-in-water emulsion stabilized by egg lecithin phospholipids indicated for the induction and maintenance of general anesthesia or sedation. It is generally assumed to be structurally homogenous as characterized by commonly used dynamic light scattering technique and laser diffraction. However, the excessive amount of egg lecithin phospholipids added to the propofol formulation may, presumably, give rise to additional formation of lipid vesicles (i.e., vesicular structures consisting of a phospholipid bilayer). In this study, we investigate the use of high-resolution cryogenic transmission electron microscopy (cryo-TEM) in morphological characterization of four commercially available propofol drug products. The TEM result, for the first time, reveals that all propofol drug products contain lipid vesicles and oil droplet-lipid vesicle aggregated structures, in addition to oil droplets. Statistical analysis shows the size and ratio of the lipid vesicles varies across four different products. To evaluate the impact of such morphological differences on active pharmaceutical ingredient (API)'s distribution, we separate the lipid vesicle phase from other constituents via ultracentrifuge fractionation and determine the amount of propofol (2,6-diisopropylphenol) using high performance liquid chromatography (HPLC). The results indicate that a nearly negligible amount of API (i.e., NMT 0.25% of labeled content) is present in the lipid vesicles and is thus primarily distributed in the oil phase. As oil droplets are the primary drug carriers and their globule size are similar, the findings of various lipid vesicle composition and sizes among different propofol products do not affect their clinical outcomes.


Assuntos
Lecitinas/química , Gotículas Lipídicas/ultraestrutura , Propofol/química , Cromatografia Líquida de Alta Pressão , Microscopia Crioeletrônica/métodos , Emulsões/química , Gotículas Lipídicas/química , Microscopia Eletrônica de Transmissão/métodos , Tamanho da Partícula , Fosfolipídeos/química , Propofol/análise , Ultracentrifugação
17.
Artigo em Inglês | MEDLINE | ID: mdl-31230526

RESUMO

Gold nanoparticles (Au NPs) hold great promise in food, industrial and biomedical applications due to their unique physicochemical properties. However, influences of the gastrointestinal tract (GIT), a likely route for Au NPs administration, on the physicochemical properties of Au NPs has been rarely evaluated. Here, we investigated the influence of GIT fluids on the physicochemical properties of Au NPs (5, 50, and 100 nm) and their implications on intestinal epithelial permeability in vitro. Au NPs aggregated in fasted gastric fluids and generated hydroxyl radicals in the presence of H2O2. Cell studies showed that GIT fluids incubation of Au NPs affected the cellular uptake of Au NPs but did not induce cytotoxicity or disturb the intestinal epithelial permeability.


Assuntos
Trato Gastrointestinal/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Sobrevivência Celular , Trato Gastrointestinal/fisiologia , Humanos , Peróxido de Hidrogênio , Radical Hidroxila , Tamanho da Partícula , Permeabilidade
18.
J Control Release ; 294: 279-287, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30576748

RESUMO

The mechanism of drug release from complex dosage forms, such as multivesicular liposomes (MVLs), is complex and oftentimes sensitive to the release environment. This challenges the design and development of an appropriate in vitro release test (IVRT) method. In this study, a commercial bupivacaine MVL product was selected as a model product and an IVRT method was developed using a modified USP 2 apparatus in conjunction with reverse-dialysis membranes. This setup allowed the use of in situ UV-Vis probes to continuously monitor the drug concentration during release. In comparison to the traditional sample-and-separate methods, the new method allowed for better control of the release conditions allowing for study of the drug release mechanism. Bupivacaine (BPV) MVLs exhibited distinct tri-phasic release characteristics comprising of an initial burst release, lag phase and a secondary release. Temperature, pH, agitation speed and release media composition were observed to impact the mechanism and rate of BPV release from MVLs. The size and morphology of the MVLs as well as their inner vesicle compartments were analyzed using cryogenic-scanning electron microscopy (cryo-SEM), confocal laser scanning microscopy and laser diffraction, where the mean diameters of the MVLs and their inner "polyhedral" vesicles were found to be 23.6 ±â€¯11.5 µm and 1.52 ±â€¯0.44 µm, respectively. Cryo-SEM results further showed a decrease in particle size and loss of internal "polyhedral" structure of the MVLs over the duration of release, indicating erosion and rearrangement of the lipid layers. Based on these results a potential MVL drug release mechanism was proposed, which may assist with the future development of more biorelevant IVRT method for similar formulations.


Assuntos
Anestésicos Locais/química , Bupivacaína/química , Liberação Controlada de Fármacos , Lipossomos , Microscopia Eletrônica de Varredura
19.
ACS Appl Mater Interfaces ; 10(48): 41138-41145, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30421603

RESUMO

Tuning hydrogel degradation enables effective and successful tissue regeneration by modulating cellular behaviors and matrix formation. In this work, we develop a novel degradable hydrogel scaffold on the basis of a unique enzyme-substrate complex by photocrosslinking. Chitosan and lysozyme are chemically modified with methacrylate moieties to be tethered in hydrogels, and in the presence of riboflavin initiator, these hydrogels are cured by blue light irradiation. The incorporation of lysozyme to chitosan hydrogels accelerates the degradation rate of the crosslinked hydrogels in a dose-dependent manner, as evidenced by an increase in pore size and interconnectivity through cryogenic scanning electron microscopy over time. Those noncytotoxic materials significantly enhance cellular proliferation and migration, which contribute to osteogenic differentiation of encapsulated mesenchymal stem cells in vitro and bone formation in mouse calvarial defects. These findings suggest a promising strategy to modulate the degradation behavior of hydrogels for use in tissue engineering.


Assuntos
Diferenciação Celular , Proliferação de Células , Quitosana/química , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Muramidase/química , Osteogênese , Engenharia Tecidual , Animais , Linhagem Celular , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Nus
20.
Int J Pharm ; 550(1-2): 229-239, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30125649

RESUMO

Measurement of particle size and size distribution of complex drug products exhibiting complex rheological behaviors can be challenging as these properties may be beyond the theoretical assumptions of the measurement technique. Herein cyclosporine (CsA) ophthalmic emulsion was selected as a model complex system, and an in-depth assessment of particle size was performed using five fundamentally different particle sizing techniques, including dynamic light scattering (DLS), laser diffraction (LD), nanoparticle tracking analysis (NTA), cryogenic transmission electron microscopy (Cryo-TEM) and 2-dimensional diffusion ordered spectroscopy nuclear magnetic resonance (2D DOSY-NMR). The effect of various viscosity modifying and stabilizing excipients in the emulsions was assessed using four types of CsA formulations, i.e., 1) no viscosity modifying excipients, 2) carbomer copolymer type A (CCA), 3) Carbopol 1342, or 4) hydroxypropyl methyl cellulose (HMPC). In general, the variability of reported particle size increased, and is not as accurate, for emulsions dispersed in a non-Newtonian fluid and at higher emulsion concentrations. This effect was reduced in part by diluting the samples to lower volume fraction and a more Newtonian regime. To address the concern that sample dilution prior to measurement may induce physical instability in the emulsions, NTA was used to monitor average size at dilutions of up to 1:50,000. The size was found to remain constant and independent of the presence or type of stabilizer used. Cryo-TEM further confirmed that dilution did not alter particle size or morphology. Of the five evaluated techniques, Cryo-TEM and 2D DOSY NMR did not require dilution for measurement. The overestimate in DLS size measurements for certain CsA formulations was attributed to complex dispersant rheological behavior, particle-particle interactions, multiple light scattering events, and/or scattering interference from the polymers, which can be overcome by either testing under dilutions or by selecting one of the techniques less impacted by the interference of polymer.


Assuntos
Ciclosporina/química , Soluções Oftálmicas/química , Emulsões , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...