Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(1): 188-194, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38018877

RESUMO

Semi-transparent large-area luminescent solar concentrators (LSCs) have been considered an essential part of zero-energy or low-energy consuming buildings in the future. Inorganic colloidal quantum dots (QDs) are promising candidates for LSCs due to the advantages of a tunable bandgap, engineered large Stokes shift, and relatively high photoluminescence (PL) quantum yield. However, LSCs that are fabricated using colloidal quantum dots exhibited an inferior stability under long-term illumination, demanding great efforts to explore the highly stable LSCs. Herein, we fabricated large-area (∼100 cm2) tandem LSCs based on highly stable carbon dots (CDs) and highly luminescent near-infrared emitting CuInSe2-xSx/ZnS (CuInSeS/ZnS) QDs. Coupled with a Si diode as a reference, the power conversion efficiency of the corresponding tandem (dimensions: 10 × 10 × 0.5 cm3) and single LSCs (dimensions: 10 × 10 × 0.3 cm3) based on CuInSeS/ZnS QDs under one sun illumination are 0.46% and 0.5%, respectively. For single CuInSeS/ZnS QD based LSCs at a low concentration (0.039 wt%), external and internal quantum efficiencies reach up to 2.87% and 36.37%, respectively. After UV illumination for 8 h, bottom LSCs based on CuInSeS/ZnS QDs retain 93.22% of the initial PL emission, which is higher than that of LSCs (∼80%) without the CD protection. The highly efficient and stable tandem LSCs employing green CDs and NIR CuInSeS/ZnS QDs as PL emitters pave the way for the realization of large area building-integrated photovoltaic (BIPV) devices.

2.
Small ; 19(50): e2304377, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649212

RESUMO

Solid-state anion exchange method is easy to handle and beneficial to improve stability of CsPbX3 (X = Cl, Br, I) perovskites nanocrystals (NCs) with respect to anion exchange in liquid phase. However, the corresponding exchange rate is rather slow due to the limited diffusion rate of anions from solid phases, resulting in mixed-halide perovskite NCs. Herein,  a fast and reversible post-synthetic quasi-solid-state anion exchange method in CsPbX3 NCs with inorganic potassium halide KX salts/polyvinylpyrrolidone (PVP) thin film is firstly reported. Original morphology of the exchanged NCs is well-preserved for all samples. Complete anion exchange from Br- to Cl- or I- is successfully achieved in CsPbX3 NCs within ≈20 min through possible vacancies-assisted ion exchange mechanism, under ambient conditions and vice versa. Particularly, Br- -exchanged CsPbCl3 and CsPbI3 NCs exhibit improved optical properties. Encouraged by the attractive fluorescence and persistent luminescence as well as good stability of the resulted CsPbX3 NCs, an effective dual-mode information storage-reading application is demonstrated.  It is believed that this method can open a new avenue for the synthesis of other direct-synthesis challenging quantum-confined perovskite NCs/nanoplates/nanodisks or CsSnX3 NCs/thin film and provide an opportunity for advanced information storage compatible for practical applications.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36897231

RESUMO

As an important part of perovskite solar cells (PSCs), hole transporting layer (HTL) has a critical impact on the performance and stability of the devices. In an attempt to alleviate the moisture and thermal stability issues from the commonly used HTL Spiro-OMeTAD with dopant, it is urgent to develop novel HTLs with high stability. In this study, a new class of polymers D18 and D18-Cl are applied as undoped HTL for CsPbI2Br-based PSCs. In addition to the excellent hole transporting properties, we unveil that D18 and D18-Cl with larger thermal expansion coefficient than that of CsPbI2Br could impose a compressive stress onto the CsPbI2Br film upon thermal treatment, which could release the residual tensile stress in the film. As a result, the efficiency of CsPbI2Br-based PSCs with D18-Cl as HTL reaches 16.73%, and the fill factor (FF) exceeds 85%, which is one of the highest FF records for the conventional-structured device to date. The devices also show impressive thermal stability with over 80% of the initial PCE retained after 85 °C heating for 1500 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...