Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 8(4)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518126

RESUMO

Background: Metabolomics is emerging as a valuable tool in clinical science. However, one major challenge in clinical metabolomics is the limited use of standardized guidelines for sample collection and handling. In this study, we conducted a pilot analysis of serum and plasma to determine the effects of processing time and collection tube on the metabolome. Methods: Blood was collected in 3 tubes: Vacutainer serum separator tube (SST, serum), EDTA (plasma) and P100 (plasma) and stored at 4 degrees for 0, 0.5, 1, 2, 4 and 24 h prior to centrifugation. Compounds were extracted using liquid-liquid extraction to obtain a hydrophilic and a hydrophobic fraction and analyzed using liquid chromatography mass spectrometry. Differences among the blood collection tubes and sample processing time were evaluated (ANOVA, Bonferroni FWER ≤ 0.05 and ANOVA, Benjamini Hochberg FDR ≤ 0.1, respectively). Results: Among the serum and plasma tubes 93.5% of compounds overlapped, 382 compounds were unique to serum and one compound was unique to plasma. There were 46, 50 and 86 compounds affected by processing time in SST, EDTA and P100 tubes, respectively, including many lipids. In contrast, 496 hydrophilic and 242 hydrophobic compounds differed by collection tube. Forty-five different chemical classes including alcohols, sugars, amino acids and prenol lipids were affected by the choice of blood collection tube. Conclusion: Our results suggest that the choice of blood collection tube has a significant effect on detected metabolites and their overall abundances. Perhaps surprisingly, variation in sample processing time has less of an effect compared to collection tube; however, a larger sample size is needed to confirm this.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...