Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(1): 105798, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36691627

RESUMO

Enzymes catalyze biochemical reactions and play critical roles in human health and disease. Enzyme variants and deficiencies can lead to variable expression of glycans, which can affect physiology, influence predilection for disease, and/or directly contribute to disease pathogenesis. Although certain well-characterized enzyme deficiencies result in overt disease, some of the most common enzyme deficiencies in humans form the basis of blood groups. These carbohydrate blood groups impact fundamental areas of clinical medicine, including the risk of infection and severity of infectious disease, bleeding risk, transfusion medicine, and tissue/organ transplantation. In this review, we examine the enzymes responsible for carbohydrate-based blood group antigen biosynthesis and their expression within the human population. We also consider the evolutionary selective pressures, e.g. malaria, that may account for the variation in carbohydrate structures and the implications of this biology for human disease.

2.
Br J Haematol ; 201(2): 227-233, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36564040

RESUMO

Autoimmune haemolytic anaemia (AIHA) and immune thrombocytopenia (ITP) are two uncommon haematologic autoimmune conditions that can rarely arise secondary to vaccination. Prior studies using the US Centers for Disease Control's (CDC) Vaccine Adverse Event Reporting System (VAERS) have demonstrated this infrequency, but contemporary data as well as comparison with current information regarding SARS-CoV-2 vaccination has not been assessed. In this study, we reviewed VAERS database reports from 1990 to 2022 to characterize the incidence and clinical and laboratory findings of non-SARS-CoV-2-associated AIHA and ITP and SARS-CoV-2 vaccine-associated AIHA and ITP. We discovered a total of 863 AIHA and ITP reports following vaccination with 15 non-SARS-CoV-2 and four SARS-CoV-2 vaccines submitted to the CDC VAERS database. AIHA and ITP reporting was low for both groups, with a large proportion excluded due to a lack of clinical details. ITP was reported the most frequently in both groups and was significantly more common with measles-mumps-rubella (MMR) vaccination (p < 0.001) in the non-SARS-CoV-2 group. AIHA and ITP cases were higher in the SARS-CoV-2 vaccine group, though ultimately still very infrequent. Autoimmune haematologic disease is vanishingly rare after immunization and rates are lower than in the general population according to passive reporting.


Assuntos
Anemia Hemolítica Autoimune , Vacinas contra COVID-19 , COVID-19 , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Anemia Hemolítica Autoimune/epidemiologia , Anemia Hemolítica Autoimune/etiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Púrpura Trombocitopênica Idiopática/etiologia , Púrpura Trombocitopênica Idiopática/induzido quimicamente , SARS-CoV-2 , Trombocitopenia/induzido quimicamente , Vacinação/efeitos adversos
3.
Gut Microbes ; 10(6): 654-662, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31062653

RESUMO

Vitamin B12 is a critical nutrient for humans as well as microbes. Due to saturable uptake, high dose oral B12 supplements are largely unabsorbed and reach the distal gut where they are available to interact with the microbiota. The aim of this study was to determine if oral B12 supplementation in mice alters 1) the concentration of B12 and related corrinoids in the distal gut, 2) the fecal microbiome, 3) short chain fatty acids (SCFA), and 4) susceptibility to experimental colitis. C57BL/6 mice (up to 24 animals/group) were supplemented with oral 3.94 µg/ml cyanocobalamin (B12), a dose selected to approximate a single 5 mg supplement for a human. Active vitamin B12 (cobalamin), and four B12-analogues ([ADE]CN-Cba, [2Me-ADE]CN-Cba, [2MeS-ADE]CN-Cba, CN-Cbi) were analyzed in cecal and fecal contents using liquid chromatography/mass spectrometry (LC/MS), in parallel with evaluation of fecal microbiota, cecal SCFA, and susceptibility to dextran sodium sulfate (DSS) colitis. At baseline, active B12 was a minor constituent of overall cecal (0.86%) and fecal (0.44%) corrinoid. Oral B12 supplementation increased active B12 at distal sites by >130-fold (cecal B12 increased from 0.08 to 10.60 ng/mg, fecal B12 increased from 0.06 to 7.81 ng/ml) and reduced microbe-derived fecal corrinoid analogues ([ADE]CN-Cba, [2Me-ADE]CN-Cba, [2MeS-ADE]CN-Cba). Oral B12 had no effect on cecal SCFA. Microbial diversity was unaffected by this intervention, however a selective decrease in Bacteroides was observed with B12 treatment. Lastly, no difference in markers of DSS-induced colitis were detected with B12 treatment.


Assuntos
Bacteroides/efeitos dos fármacos , Corrinoides/análise , Suplementos Nutricionais/análise , Vitamina B 12/administração & dosagem , Complexo Vitamínico B/administração & dosagem , Administração Oral , Animais , Bacteroides/crescimento & desenvolvimento , Ceco/química , Colite/induzido quimicamente , Colite/dietoterapia , Sulfato de Dextrana/toxicidade , Ácidos Graxos Voláteis/análise , Fezes/química , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Vitamina B 12/farmacologia , Complexo Vitamínico B/farmacologia
4.
J Mol Biol ; 430(7): 1024-1050, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29426014

RESUMO

Perturbations in activity and dosage of the UBE3A ubiquitin-ligase have been linked to Angelman syndrome and autism spectrum disorders. UBE3A was initially identified as the cellular protein hijacked by the human papillomavirus E6 protein to mediate the ubiquitylation of p53, a function critical to the oncogenic potential of these viruses. Although a number of substrates have been identified, the normal cellular functions and pathways affected by UBE3A are largely unknown. Previously, we showed that UBE3A associates with HERC2, NEURL4, and MAPK6/ERK3 in a high-molecular-weight complex of unknown function that we refer to as the HUN complex (HERC2, UBE3A, and NEURL4). In this study, the combination of two complementary proteomic approaches with a rigorous network analysis revealed cellular functions and pathways in which UBE3A and the HUN complex are involved. In addition to finding new UBE3A-associated proteins, such as MCM6, SUGT1, EIF3C, and ASPP2, network analysis revealed that UBE3A-associated proteins are connected to several fundamental cellular processes including translation, DNA replication, intracellular trafficking, and centrosome regulation. Our analysis suggests that UBE3A could be involved in the control and/or integration of these cellular processes, in some cases as a component of the HUN complex, and also provides evidence for crosstalk between the HUN complex and CAMKII interaction networks. This study contributes to a deeper understanding of the cellular functions of UBE3A and its potential role in pathways that may be affected in Angelman syndrome, UBE3A-associated autism spectrum disorders, and human papillomavirus-associated cancers.


Assuntos
Mapeamento de Interação de Proteínas , Ubiquitina-Proteína Ligases/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo
5.
PLoS One ; 13(1): e0190330, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29300773

RESUMO

The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 µGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial "pause" in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature.


Assuntos
Fibroblastos/efeitos da radiação , Animais , Relação Dose-Resposta a Droga , Fibroblastos/citologia , Citometria de Fluxo , Imunofluorescência , Fase G1 , Camundongos , Células NIH 3T3 , Proteínas/metabolismo , Fase de Repouso do Ciclo Celular
6.
J Immunol ; 199(8): 2976-2984, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28893958

RESUMO

Commensal interactions between the enteric microbiota and distal intestine play important roles in regulating human health. Short-chain fatty acids (SCFAs), such as butyrate, produced through anaerobic microbial metabolism represent a major energy source for the host colonic epithelium and enhance epithelial barrier function through unclear mechanisms. Separate studies revealed that the epithelial anti-inflammatory IL-10 receptor α subunit (IL-10RA) is also important for barrier formation. Based on these findings, we examined if SCFAs promote epithelial barrier through IL-10RA-dependent mechanisms. Using human intestinal epithelial cells (IECs), we discovered that SCFAs, particularly butyrate, enhanced IEC barrier formation, induced IL-10RA mRNA, IL-10RA protein, and transactivation through activated Stat3 and HDAC inhibition. Loss and gain of IL-10RA expression directly correlates with IEC barrier formation and butyrate represses permeability-promoting claudin-2 tight-junction protein expression through an IL-10RA-dependent mechanism. Our findings provide a novel mechanism by which microbial-derived butyrate promotes barrier through IL-10RA-dependent repression of claudin-2.


Assuntos
Bactérias Anaeróbias/fisiologia , Butiratos/metabolismo , Colo/patologia , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/fisiologia , Receptores de Interleucina-10/metabolismo , Junções Íntimas/metabolismo , Butiratos/imunologia , Linhagem Celular , Células Cultivadas , Claudina-2/metabolismo , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Receptores de Interleucina-10/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Simbiose , Ativação Transcricional , Migração Transendotelial e Transepitelial , Regulação para Cima
7.
Free Radic Biol Med ; 105: 86-92, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27687211

RESUMO

In recent years, studies in the gastrointestinal (GI) mucosa have taught us a number of important lessons related to tissue oxygenation and metabolism in health and disease. The highly vascularized mucosa lies immediately adjacent to an anaerobic lumen containing trillions of metabolically active microbes (i.e. the microbiome) that results in one of the more austere tissue microenvironments in the body. These studies have also implicated a prominent role for oxygen metabolism and hypoxia in inflammation, so called "inflammatory hypoxia", that results from the activation of multiple oxygen consuming enzymes. Inflammation-associated shifts in the composition of the microbiome and microbial-derived metabolites have revealed a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of key target genes that promote inflammatory resolution. Analyses of these pathways have provided a multitude of opportunities for understanding basic mechanisms of both homeostasis and disease and have defined new targets for intervention. Here, we review recent advances in our understanding of metabolic influences on host-microbe interactions in the GI mucosa.


Assuntos
Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Mucosa Intestinal/microbiologia , Animais , Hipóxia Celular , Colite/microbiologia , Trato Gastrointestinal/microbiologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Oxirredução
8.
Am J Physiol Cell Physiol ; 309(6): C350-60, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26179603

RESUMO

In recent years, the intestinal mucosa has proven to be an intriguing organ to study tissue oxygenation. The highly vascularized lamina propria juxtaposed to an anaerobic lumen containing trillions of metabolically active microbes results in one of the most austere tissue microenvironments in the body. Studies to date have determined that a healthy mucosa contains a steep oxygen gradient along the length of the intestine and from the lumen to the serosa. Advances in technology have allowed multiple independent measures and indicate that, in the healthy mucosa of the small and large intestine, the lumen-apposed epithelia experience Po2 conditions of <10 mmHg, so-called physiologic hypoxia. This unique physiology results from a combination of factors, including countercurrent exchange blood flow, fluctuating oxygen demands, epithelial metabolism, and oxygen diffusion into the lumen. Such conditions result in the activation of a number of hypoxia-related signaling processes, including stabilization of the transcription factor hypoxia-inducible factor. Here, we review the principles of mucosal oxygen delivery, metabolism, and end-point functional responses that result from this unique oxygenation profile.


Assuntos
Homeostase/fisiologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiopatologia , Oxigênio/metabolismo , Animais , Humanos , Fatores de Transcrição/metabolismo
9.
Cell Host Microbe ; 17(5): 662-71, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25865369

RESUMO

Interactions between the microbiota and distal gut are fundamental determinants of human health. Such interactions are concentrated at the colonic mucosa and provide energy for the host epithelium through the production of the short-chain fatty acid butyrate. We sought to determine the role of epithelial butyrate metabolism in establishing the austere oxygenation profile of the distal gut. Bacteria-derived butyrate affects epithelial O2 consumption and results in stabilization of hypoxia-inducible factor (HIF), a transcription factor coordinating barrier protection. Antibiotic-mediated depletion of the microbiota reduces colonic butyrate and HIF expression, both of which are restored by butyrate supplementation. Additionally, germ-free mice exhibit diminished retention of O2-sensitive dyes and decreased stabilized HIF. Furthermore, the influences of butyrate are lost in cells lacking HIF, thus linking butyrate metabolism to stabilized HIF and barrier function. This work highlights a mechanism where host-microbe interactions augment barrier function in the distal gut.


Assuntos
Bactérias/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Ácidos Graxos Voláteis/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 1 Induzível por Hipóxia/biossíntese , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Camundongos , Consumo de Oxigênio
10.
Nat Struct Mol Biol ; 20(11): 1250-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24077223

RESUMO

Polycomb repressive complex 2 (PRC2) is a histone methyltransferase required for epigenetic silencing during development and cancer. Long noncoding RNAs (lncRNAs) recruit PRC2 to chromatin, but the general role of RNA in maintaining repressed chromatin is unknown. Here we measure the binding constants of human PRC2 to various RNAs and find comparable affinity for human lncRNAs targeted by PRC2 as for irrelevant transcripts from ciliates and bacteria. PRC2 binding is size dependent, with lower affinity for shorter RNAs. In vivo, PRC2 predominantly occupies repressed genes; PRC2 is also associated with active genes, but most of those are not regulated by PRC2. These findings support a model in which PRC2's promiscuous binding to RNA transcripts allows it to scan for target genes that have escaped repression, thus leading to maintenance of the repressed state. Such RNAs may also provide a decoy for PRC2.


Assuntos
Complexo Repressor Polycomb 2/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Bactérias , Cilióforos , Perfilação da Expressão Gênica , Humanos , Ligação Proteica
11.
Cancer Res ; 69(16): 6668-75, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19679553

RESUMO

Abnormal centrosome and centriole numbers are frequently detected in tumor cells where they can contribute to mitotic aberrations that cause chromosome missegregation and aneuploidy. The molecular mechanisms of centriole overduplication in malignant cells, however, are poorly characterized. Here, we show that the core SKP1-cullin-F-box component cullin 1 (CUL1) localizes to maternal centrioles and that CUL1 is critical for suppressing centriole overduplication through multiplication, a recently discovered mechanism whereby multiple daughter centrioles form concurrently at single maternal centrioles. We found that this activity of CUL1 involves the degradation of Polo-like kinase 4 (PLK4) at maternal centrioles. PLK4 is required for centriole duplication and strongly stimulates centriole multiplication when aberrantly expressed. We found that CUL1 is critical for the degradation of active PLK4 following deregulation of cyclin E/cyclin-dependent kinase 2 activity, as is frequently observed in human cancer cells, as well as for baseline PLK4 protein stability. Collectively, our results suggest that CUL1 may function as a tumor suppressor by regulating PLK4 protein levels and thereby restraining excessive daughter centriole formation at maternal centrioles.


Assuntos
Centríolos/fisiologia , Centrossomo/metabolismo , Proteínas Culina/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Divisão Celular/fisiologia , Células Cultivadas , Centríolos/efeitos dos fármacos , Centríolos/metabolismo , Centrossomo/efeitos dos fármacos , Proteínas Culina/metabolismo , Ciclina E/metabolismo , Ciclina E/fisiologia , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/fisiologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Humanos , Modelos Biológicos , Oncogenes/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , RNA Interferente Pequeno/farmacologia , Proteínas Ligases SKP Culina F-Box/antagonistas & inibidores , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/fisiologia
12.
J Virol ; 83(17): 8683-92, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19553317

RESUMO

The papillomavirus (PV) E2 protein is an important regulator of the viral life cycle. It has diverse roles in viral transcription, DNA replication, and genome maintenance. Our laboratory has previously identified the cellular bromodomain protein Brd4 as a key interacting partner of E2. Brd4 mediates the transcriptional activation function of E2 and plays an important role in viral genome maintenance in dividing cells. E2 interacts with the C-terminal domain (CTD) of Brd4, and the CTD functions in a dominant-negative manner through binding E2 and interfering with E2's interaction with the full-length Brd4 protein. Previous studies have shown that PV E2 proteins are short lived; however, the mechanisms regulating their stability and degradation have not yet been well established. In this study, we explored the role of Brd4 in the regulation of bovine PV 1 (BPV1) and human PV 16 (HPV16) E2 stability. Expression of the Brd4 CTD dramatically increases E2 levels. Both BPV1 E2 and HPV16 E2 are regulated by ubiquitylation, and Brd4 CTD expression blocks this ubiquitylation, thus stabilizing the E2 protein. Furthermore, we have identified the cullin-based E3 ligases and specifically cullin-3 as potential components of the ubiquitylation machinery that targets both BPV1 and HPV16 E2 for ubiquitylation. Expression of the Brd4 CTD blocks the interaction between E2 and the cullin-3 complex. In addition to Brd4's role in mediating E2 transcription and genome tethering activities, these data suggest a potential role for Brd4 in regulating E2 stability and protein levels within PV-infected cells.


Assuntos
Papillomavirus Bovino 1/fisiologia , Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 16/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Oncogênicas Virais/metabolismo , Fatores de Transcrição/fisiologia , Proteínas Virais/metabolismo , Animais , Bovinos , Proteínas de Ciclo Celular , Proteínas Culina/metabolismo , Humanos , Estabilidade Proteica , Ubiquitinação
13.
Environ Mol Mutagen ; 50(8): 741-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19326465

RESUMO

Centrosome aberrations are a frequent finding in human tumors. However, very little is known about the molecular mechanisms leading to disruption of centrosome duplication control and the functional consequences of aberrant centrosome numbers. The high-risk human papillomavirus Type 16 (HPV-16) E6 and E7 oncoproteins are overexpressed in HPV-associated malignancies of the anogenital tract and have been instrumental in delineating different pathways of centrosome amplification. Whereas the E6 oncoprotein was found to provoke centrosome accumulation, the HPV-16 E7 oncoprotein triggers a genuine disruption of the centrosome duplication cycle. Importantly, the E7 oncoprotein can rapidly cause centrosome overduplication through a pathway that involves the concurrent formation of multiple daughters at single maternal centrioles (centriole flowers). Several lines of evidence suggest that cyclin E/CDK2 complexes and Polo-like kinase 4 (PLK4) are crucial players in this process. These findings underscore that the HPV-16 E7 oncoprotein is a unique tool to dissect normal and abnormal centriole biogenesis and the underlying molecular circuitry.


Assuntos
Centrossomo , Instabilidade Cromossômica , Aberrações Cromossômicas , Papillomaviridae/fisiologia , Proteínas Virais/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...