Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37937557

RESUMO

BACKGROUND: Stem cell properties vary considerably based on the source and tissue site of mesenchymal stem cells (MSCs). The mandibular condyle is a unique kind of craniofacial bone with a special structure and a relatively high remodeling rate. MSCs here may also be unique to address specific physical needs. OBJECTIVE: The aim of this study was to compare the proliferation and multidirectional differentiation potential among MSCs derived from the tibia (TMSCs), mandibular ramus marrow (MMSCs), and condylar subchondral bone (SMSCs) of rats in vitro. METHODS: Cell proliferation and migration were assessed by CCK-8, laser confocal, and cell scratch assays. Histochemical staining and real-time PCR were used to evaluate the multidirectional differentiation potential and DNA methylation and histone deacetylation levels. RESULTS: The proliferation rate and self-renewal capacity of SMSCs were significantly higher than those of MMSCs and TMSCs. Moreover, SMSCs possessed significantly higher mineralization and osteogenic differentiation potential. Dnmt2, Dnmt3b, Hdac6, Hdac7, Hdac9, and Hdac10 may be instrumental in the osteogenesis of SMSCs. In addition, SMSCs are distinct from MMSCs and TMSCs with lower adipogenic differentiation and chondrogenic differentiation potential. The multidirectional differentiation capacities of TMSCs were exactly the opposite of those of SMSCs, and the results of MMSCs were intermediate. CONCLUSION: This research offers a new paradigm in which SMSCs could be a useful source of stem cells for further application in stem cell-based medical therapies due to their strong cell renewal and osteogenic capacity.

2.
BMC Plant Biol ; 23(1): 248, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170202

RESUMO

BACKGROUND: Histone modification is an important epigenetic regulatory mechanism and essential for stress adaptation in plants. However, systematic analysis of histone modification genes (HMs) in Brassicaceae species is lacking, and their roles in response to abiotic stress have not yet been identified. RESULTS: In this study, we identified 102 AtHMs, 280 BnaHMs, 251 BcHMs, 251 BjHMs, 144 BnHMs, 155 BoHMs, 137 BrHMs, 122 CrHMs, and 356 CsHMs in nine Brassicaceae species, respectively. Their chromosomal locations, protein/gene structures, phylogenetic trees, and syntenies were determined. Specific domains were identified in several Brassicaceae HMs, indicating an association with diverse functions. Syntenic analysis showed that the expansion of Brassicaceae HMs may be due to segmental and whole-genome duplications. Nine key BnaHMs in allotetraploid rapeseed may be responsible for ammonium, salt, boron, cadmium, nitrate, and potassium stress based on co-expression network analysis. According to weighted gene co-expression network analysis (WGCNA), 12 BnaHMs were associated with stress adaptation. Among the above genes, BnaPRMT11 simultaneously responded to four different stresses based on differential expression analysis, while BnaSDG46, BnaHDT10, and BnaHDA1 participated in five stresses. BnaSDG46 was also involved in four different stresses based on WGCNA, while BnaSDG10 and BnaJMJ58 were differentially expressed in response to six different stresses. In summary, six candidate genes for stress resistance (BnaPRMT11, BnaSDG46, BnaSDG10, BnaJMJ58, BnaHDT10, and BnaHDA1) were identified. CONCLUSIONS: Taken together, these findings help clarify the biological roles of Brassicaceae HMs. The identified candidate genes provide an important reference for the potential development of stress-tolerant oilseed plants.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Filogenia , Código das Histonas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brassica rapa/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
3.
J Environ Sci (China) ; 128: 213-223, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36801036

RESUMO

A water-stable bimetallic Fe/Zr metal-organic framework [UiO-66(Fe/Zr)] for exceptional decontamination of arsenic in water was fabricated through a facile one-step strategy. The batch adsorption experiments revealed the excellent performances with ultrafast adsorption kinetics due to the synergistic effects of two functional centers and large surface area (498.33 m2/g). The absorption capacity of UiO-66(Fe/Zr) for arsenate [As(V)] and arsenite [As(III)] reached as high as 204.1 mg/g and 101.7 mg/g, respectively. Langmuir model was suitable to describe the adsorption behaviors of arsenic on UiO-66(Fe/Zr). The fast kinetics (adsorption equilibrium in 30 min, 10 mg/L As) and pseudo-second-order model implied the strong chemisorption between arsenic ions and UiO-66(Fe/Zr), which was further confirmed by DFT theoretical calculations. The results of FT-IR, XPS analysis and TCLP test demonstrated that arsenic was immobilized on the surface of UiO-66(Fe/Zr) through Fe/Zr-O-As bonds, and the leaching rates of the adsorbed As(III) and As(V) from the spent adsorbent were only 5.6% and 1.4%, respectively. UiO-66(Fe/Zr) can be regenerated for five cycles without obvious removal efficiency decrease. The original arsenic (1.0 mg/L) in lake and tap water was effectively removed in 2.0 hr [99.0% of As(III) and 99.8% of As(V)]. The bimetallic UiO-66(Fe/Zr) has great potentials in water deep purification of arsenic with fast kinetics and high capacity.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Arsênio/química , Água , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água/métodos , Adsorção , Poluentes Químicos da Água/química
5.
World J Stem Cells ; 14(7): 490-502, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-36157525

RESUMO

Stem cell fate determination is one of the central questions in stem cell biology, and although its regulation has been studied at genomic and proteomic levels, a variety of biological activities in cells occur at the metabolic level. Metabolomics studies have established the metabolome during stem cell differentiation and have revealed the role of metabolites in stem cell fate determination. While metabolism is considered to play a biological regulatory role as an energy source, recent studies have suggested the nexus between metabolism and epigenetics because several metabolites function as cofactors and substrates in epigenetic mechanisms, including histone modification, DNA methylation, and microRNAs. Additionally, the epigenetic modification is sensitive to the dynamic metabolites and consequently leads to changes in transcription. The nexus between metabolism and epigenetics proposes a novel stem cell-based therapeutic strategy through manipulating metabolites. In the present review, we summarize the possible nexus between metabolic and epigenetic regulation in stem cell fate determination, and discuss the potential preventive and therapeutic strategies via targeting metabolites.

6.
Ecotoxicol Environ Saf ; 245: 114097, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36150305

RESUMO

Binary metallic organic frameworks can always play excellent functions for pollutants removal. One binary MOFs, UiO-66(Fe/Zr)), was newly synthesized and applied to remove aquatic selenite (SeIV) and selenate (SeVI). The adsorption behaviors and mechanisms were investigated using batch experiments, spectroscopic analyses, and theoretical calculations (DFT). The characterization results showed that the material inherited the topological structure of UiO-66 and excellent thermal stability. The large specific surface area (467.52 m2/g) and uniform mesoporous structures of the synthesized MOFs resulted in fast adsorption efficiency and high adsorption capacity for selenium species. The adsorbent kept high adsorption efficiency in a wide pH range from 2 to 11 with good anti-interference ability. The maximum adsorption capacity for Se(IV) and Se(VI) reached as high as 196 mg/g at pH 3 and 258 mg/g at pH 5, respectively. The process was conformed to fit pseudo-second-order kinetics and Langmuir isotherm, and could be explained by the formation of Fe/Zr-O-Se bond on the material surface, which was interpreted by the results of XPS, FTIR and DFT calculation. The regeneration and TCLP experiments demonstrated that UiO-66(Fe/Zr) could be regenerated for five cycles without obvious decrease of efficiencies, and the leaching rate of the adsorbed Se(IV) and Se(VI) in the spent adsorbent were only 4.8% and 2.3%. More than 99% of original Se(IV) and Se(VI) in the lake and tap water samples (1.0 mg/L of Se) could be removed in 2.0 h.


Assuntos
Selênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Estruturas Metalorgânicas , Ácidos Ftálicos , Ácido Selênico , Ácido Selenioso , Selênio/química , Água/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
7.
World J Stem Cells ; 13(11): 1647-1666, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34909116

RESUMO

Regenerative endodontics (RE) therapy means physiologically replacing damaged pulp tissue and regaining functional dentin-pulp complex. Current clinical RE procedures recruit endogenous stem cells from the apical papilla, periodontal tissue, bone marrow and peripheral blood, with or without application of scaffolds and growth factors in the root canal space, resulting in cementum-like and bone-like tissue formation. Without the involvement of dental pulp stem cells (DPSCs), it is unlikely that functional pulp regeneration can be achieved, even though acceptable repair can be acquired. DPSCs, due to their specific odontogenic potential, high proliferation, neurovascular property, and easy accessibility, are considered as the most eligible cell source for dentin-pulp regeneration. The regenerative potential of DPSCs has been demonstrated by recent clinical progress. DPSC transplantation following pulpectomy has successfully reconstructed neurovascularized pulp that simulates the physiological structure of natural pulp. The self-renewal, proliferation, and odontogenic differentiation of DPSCs are under the control of a cascade of transcription factors. Over recent decades, epigenetic modulations implicating histone modifications, DNA methylation, and noncoding (nc)RNAs have manifested as a new layer of gene regulation. These modulations exhibit a profound effect on the cellular activities of DPSCs. In this review, we offer an overview about epigenetic regulation of the fate of DPSCs; in particular, on the proliferation, odontogenic differentiation, angiogenesis, and neurogenesis. We emphasize recent discoveries of epigenetic molecules that can alter DPSC status and promote pulp regeneration through manipulation over epigenetic profiles.

8.
Ecotoxicol Environ Saf ; 228: 112990, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34798359

RESUMO

Metal-organic frameworks (MOFs) have been widely applied for pollutants removal in water. However, the powdered MOFs are always suffered from aggregation during use and difficult collection after use. These problems discount their efficiency and inhibit their reusability. In this work, Zr-based MOF (UiO-66) was successfully imprisoned into a water-stable polyacrylonitrile (PAN) substrate by electrospinning. The containing UiO-66 hybrid membrane was confirmed by instrumental characterizations and its stability was also investigated by ICP-OES analysis. The obtained composite membrane can efficiently remove both arsenite (AsIII) and arsenate (AsV) from water under natural pH conditions. The adsorption kinetic fitted well with pseudo-second-order model and was dominated by chemisorption. Its adsorption isotherm can be described by Langmuir model. The maximal adsorption capacities of the hybrid membrane for As(V) and As(III) were 42.17 mg/g and 32.90 mg/g, respectively. Our results demonstrated that the MOFs-dispersed electrospun nanofiber membrane can greatly inherit the MOFs' original adsorption properties and exhibits good regenerability without loss of MOFs. Electrospinning is an effective and practical method for the preparation of MOFs hybrid membrane, which makes the composite very easy to be collected after use.

9.
Chin J Dent Res ; 24(3): 143-152, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491008

RESUMO

Tooth eruption is closely linked to the normal development of dentition and proper establishment of occlusion. Disturbances in tooth eruption may affect oral physiological functions, facial contour and aesthetics; it is therefore important to understand the eruption process. This process is a complex biological event involving dynamic changes at the tissue and cellular levels. It is guided by anatomical structures as well as biological and molecular factors that result in the movement of the tooth to its final functional position in the oral cavity. Evidence increasingly suggests that stem cells contribute to tooth development and eruption. Multiple stem cell populations have been discovered in teeth and in their supporting tissues, such as dental follicle precursor cells, orofacial bone-/bone marrow-derived mesenchymal stem cells, periodontal ligament stem cells, stem cells from the apical papilla and dental pulp stem cells. These stem cells exhibit distinct differentiation capacities and are closely linked to alveolar bone remodelling, periodontium development and root formation during the eruption process. The present review summarises the current knowledge of the characteristics and functions of orofacial stem cells in tooth eruption, with a particular focus on recent discoveries concerning their lineage allocation and regulatory mechanisms.


Assuntos
Erupção Dentária , Dente , Diferenciação Celular , Ligamento Periodontal , Células-Tronco
10.
BMC Plant Biol ; 21(1): 288, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167468

RESUMO

BACKGROUND: B-box (BBX) genes play important roles in plant growth regulation and responses to abiotic stresses. The plant growth and yield production of allotetraploid rapeseed is usually hindered by diverse nutrient stresses. However, no systematic analysis of Brassicaceae BBXs and the roles of BBXs in the regulation of nutrient stress responses have not been identified and characterized previously. RESULTS: In this study, a total of 536 BBXs were identified from nine brassicaceae species, including 32 AtBBXs, 66 BnaBBXs, 41 BoBBXs, 43 BrBBXs, 26 CrBBXs, 81 CsBBXs, 52 BnBBXs, 93 BjBBXs, and 102 BcBBXs. Syntenic analysis showed that great differences in the gene number of Brassicaceae BBXs might be caused by genome duplication. The BBXs were respectively divided into five subclasses according to their phylogenetic relationships and conserved domains, indicating their diversified functions. Promoter cis-element analysis showed that BBXs probably participated in diverse stress responses. Protein-protein interactions between BnaBBXs indicated their functions in flower induction. The expression profiles of BnaBBXs were investigated in rapeseed plants under boron deficiency, boron toxicity, nitrate limitation, phosphate shortage, potassium starvation, ammonium excess, cadmium toxicity, and salt stress conditions using RNA-seq data. The results showed that different BnaBBXs showed differential transcriptional responses to nutrient stresses, and some of them were simultaneously responsive to diverse nutrient stresses. CONCLUSIONS: Taken together, the findings investigated in this study provided rich resources for studying Brassicaceae BBX gene family and enriched potential clues in the genetic improvement of crop stress resistance.


Assuntos
Brassica napus/genética , Brassicaceae/genética , Genes de Plantas/genética , Fatores de Transcrição/genética , Brassica napus/fisiologia , Sequência Conservada , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Filogenia , Mapas de Interação de Proteínas , Estresse Fisiológico , Sintenia , Tetraploidia , Fatores de Transcrição/fisiologia
11.
Nat Commun ; 11(1): 3511, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665599

RESUMO

In the context of continuously increasing anthropogenic nitrogen inputs, knowledge of how ammonia oxidation (AO) in the ocean responds to warming is crucial to predicting future changes in marine nitrogen biogeochemistry. Here, we show divergent thermal response patterns for marine AO across a wide onshore/offshore trophic gradient. We find ammonia oxidizer community and ambient substrate co-regulate optimum temperatures (Topt), generating distinct thermal response patterns with Topt varying from ≤14 °C to ≥34 °C. Substrate addition elevates Topt when ambient substrate is unsaturated. The thermal sensitivity of kinetic parameters allows us to predict responses of both AO rate and Topt at varying substrate and temperature below the critical temperature. A warming ocean promotes nearshore AO, while suppressing offshore AO. Our findings reconcile field inconsistencies of temperature effects on AO, suggesting that predictive biogeochemical models need to include such differential warming mechanisms on this key nitrogen cycle process.


Assuntos
Amônia/metabolismo , Mudança Climática , Microbiota/fisiologia , Oxirredução , Temperatura
12.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 38(2): 205-210, 2020 Apr 01.
Artigo em Chinês | MEDLINE | ID: mdl-32314896

RESUMO

Primary tooth root canal therapy is a treatment performed on primary teeth diagnosed with pulpitis or periapical periodontitis. This procedure requires perfect instrumentation, disinfection, and filling of root canals to eliminate infection, control inflammation, relieve pain, prevent pathological effects on inherited permanent tooth, and prolong primary tooth preservation. This paper reviews the research history on primary tooth root canal treatment and summarizes the progress on primary tooth root canal treatment, including anatomical morphology, root canal preparation, root canal disinfection, root canal filling, and application of antibiotics.


Assuntos
Periodontite Periapical , Materiais Restauradores do Canal Radicular , Cavidade Pulpar , Humanos , Obturação do Canal Radicular , Preparo de Canal Radicular , Tratamento do Canal Radicular , Dente Decíduo
13.
Food Chem ; 312: 126085, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31896460

RESUMO

The effects of hydroxycinnamic acids such as cinnamic acid (CNA), p-coumaric acid(CMA), caffeic acid (CFA), and chlorogenic acid (CGA) on the reduction of furan in canned-coffee model systems (CCMS) containing α-dicarbonyls [glyoxal (GO) or methylglyoxal (MGO)] were investigated. The concentration of furan in CCMS containing GO, which was 59.76 µg/L, was reduced by the addition of CFA and CGA to 48.31 µg/L and 41.38 µg/L, respectively; similarly, the furan concentration in model system containing MGO was 45.79 µg/L, and this decreased to 35.41 µg/L (by CFA) and 32.65 µg/L (by CGA), respectively. In addition, the effects of hydroxycinnamic acids on the trapping of GO and MGO were determined. CFA and CGA greatly reduced the concentration of GO to 303.51 µg/L and 267.80 µg/L, respectively (compared to 515.79 µg/L in the control), whereas that of MGO was decreased to 207.01 µg/L and 219.14 µg/L (compared to 417.14 µg/L in the control). The trapping of α-dicarbonyls such as GO and MGO by CFA and CGA could be closely related to furan reduction in CCMS.


Assuntos
Ácidos Cumáricos/química , Furanos/química , Aldeído Pirúvico/química , Ácido Clorogênico/química , Café/química , Glioxal/química
14.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 36(4): 435-440, 2018 Aug 01.
Artigo em Chinês | MEDLINE | ID: mdl-30182573

RESUMO

Deciduous teeth are the first dentition of humans and play an important role in children's physical and mental development. Dental caries are one of the most common oral diseases in children. According to the data of the World Health Organization, 60%-90% of school children worldwide develop dental caries. In China, dental caries of primary teeth feature high incidence and low rate of visits. Without timely treatment, the deep caries lesions of primary teeth can lead to teeth defect, pulpitis, apical periodontitis, and maxillofacial space infection. Moreover, the premature loss of deciduous teeth can cause malocclusion and eruption disorder of subsequent permanent teeth. These conditions all cause considerable effects on children's oral health and physical and mental development. Performing active and effective measures to treat deciduous teeth with deep caries lesions is important to maintain the integrity and normal physiological function of dentition and facilitate normal eruption of permanent teeth. The current situation of indirect pulp therapy in China was studied in this paper. Basic concepts, including indirect pulp capping, interim therapeutic restoration, partial caries removal, stepwise caries removal, and atraumatic restorative therapy, have been defined by consulting domestic and foreign literature. A theoretical basis for improving the clinical pathway of deciduous teeth with deep caries lesions is provided by explaining the technical connotation and therapeutic importance of indirect pulp therapy in primary teeth.


Assuntos
Cárie Dentária , Capeamento da Polpa Dentária , Criança , China , Assistência Odontológica , Cárie Dentária/terapia , Restauração Dentária Permanente , Humanos , Dente Decíduo
15.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 36(3): 319-324, 2018 Jun 01.
Artigo em Chinês | MEDLINE | ID: mdl-29984936

RESUMO

Pregnancy is a time of particular vulnerability in terms of physiologic changes resulting in higher risk of oral infectious diseases. There is emerging evidence showing that irrational dental treatment and drug therapy are associated with adverse pregnancy outcomes, including infant malformation or spontaneous abortion. This article reviews the pharmacokinetics of medications in pregnant women and the fetus and introduces a guideline for drug therapy and common dental drugs used during pregnancy.


Assuntos
Assistência Odontológica , Farmacocinética , Complicações Infecciosas na Gravidez , Tratamento Farmacológico , Feminino , Humanos , Lactente , Gravidez , Complicações Infecciosas na Gravidez/tratamento farmacológico
16.
Int J Oral Sci ; 8(4): 199-204, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27982023

RESUMO

Tooth development relies on sequential and reciprocal interactions between the epithelial and mesenchymal tissues, and it is continuously regulated by a variety of conserved and specific temporal-spatial signalling pathways. It is well known that suspensions of tooth germ cells can form tooth-like structures after losing the positional information provided by the epithelial and mesenchymal tissues. However, the particular stage in which the tooth germ cells start to form tooth-like structures after losing their positional information remains unclear. In this study, we investigated the reassociation of tooth germ cells suspension from different morphological stages during tooth development and the phosphorylation of Smad2/3 in this process. Four tooth morphological stages were designed in this study. The results showed that tooth germ cells formed odontogenic tissue at embryonic day (E) 14.5, which is referred to as the cap stage, and they formed tooth-like structures at E16.5, which is referred to as the early bell stage, and E18.5, which is referred to as the late bell stage. Moreover, the transforming growth factor-ß signalling pathway might play a role in this process.


Assuntos
Odontogênese , Fator de Crescimento Transformador beta , Dente , Germe de Dente , Fatores de Crescimento Transformadores
17.
Int J Oral Sci ; 8(2): 84-92, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27357320

RESUMO

Osteoporosis is a serious public bone metabolic disease. However, the mechanisms underlying bone loss combined with ageing, which is known as senile osteoporosis, remains unknown. Here we show the detailed phenotype of this disease caused by SIRT6 knock out (KO) in mice. To the best of our knowledge, this is the first study to reveal that SIRT6 is expressed in both bone marrow stroma cells and bone-related cells in both mouse and human models, which suggests that SIRT6 is an important regulator in bone metabolism. SIRT6-KO mice exhibit a significant decrease in body weight and remarkable dwarfism. The skeleton of the SIRT6-KO mouse is deficient in cartilage and mineralized bone tissue. Moreover, the osteocalcin concentration in blood is lower, which suggests that bone mass is markedly lost. Besides, the tartrate-resistant acid phosphatase 5b (TRAP5b) concentration is much higher, which suggests that bone resorption is overactive. Both trabecular and cortical bones exhibit severe osteopenia, and the bone mineral density is decreased. Moreover, double-labelling analysis shows that bone formation is much slower. To determine whether SIRT6 directly regulates bone metabolism, we cultured primary bone marrow stromal cells for osteogenesis and osteoclastogenesis separately to avoid indirect interference in vivo responses such as inflammation. Taken together, these results show that SIRT6 can directly regulate osteoblast proliferation and differentiation, resulting in attenuation in mineralization. Furthermore, SIRT6 can directly regulate osteoclast differentiation and results in a higher number of small osteoclasts, which may be related to overactive bone resorption.


Assuntos
Diferenciação Celular , Osteoporose/genética , Sirtuínas/genética , Animais , Reabsorção Óssea , Osso e Ossos , Humanos , Camundongos , Osteoblastos , Osteoclastos , Osteogênese , Fenótipo , Sirtuínas/metabolismo , Fosfatase Ácida Resistente a Tartarato
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 46(1): 87-9, 98, 2015 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-25807802

RESUMO

OBJECTIVE: To determine adhesion of Streptococcus mutans (S. mutans) to different kinds of removable denture crowns for the purpose of minimizing influence of removable denture on oral environment. METHODS: Three kinds of removable denture crowns (single color synthetic resin teeth, alloy pin porcelain tooth and minute color synthetic resin teeth) were adsorbed S. mutans for 24 h in sterile saliva, The adhered bacteria were counted by means of sonic oscillation and bacteria coating. RESULTS: Highest level of adhesion was found on ,the single color synthetic resin teeth was adsorbed mostly, followed by alloy pin porcelain teeth. Minute color synthetic resin teeth had far less adhesion than the others (P<0.01). CONCLUSION: Minute color synthetic resin teeth have less adhesion of S. mutans, which may be associated with their lower level of surface free energy.


Assuntos
Aderência Bacteriana , Coroas/microbiologia , Streptococcus mutans , Porcelana Dentária , Prótese Parcial/microbiologia , Propriedades de Superfície , Dente Artificial/microbiologia
19.
Food Res Int ; 75: 328-336, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28454963

RESUMO

The formation of furan and certain volatiles related to furan formation mechanisms was studied using gas chromatography-mass spectrometry combined with solid-phase micro extraction after adding dicarbonyl trapping agents [epicatechin (EC), epigallocatechin gallate (EGCG), and catechin], water-soluble antioxidants (Trolox, caffeic acid, ferulic acid, and chlorogenic acid), fat-soluble antioxidants (α-tocopherol, BHT, and ß-carotene), and reducing agents (glutathione and sodium sulfite) to canned-coffee model systems (CMS). The level of furan formation decreased significantly following the addition of EC (by 65.3%), EGCG (by 60.0%), and catechin (by 44.7%). In addition, the formation of Maillard reaction products, including furan derivatives (furfural and 5-methylfurfural), Strecker aldehyde (2-methylbutanal), pyrazines (2,6-dimethylpyrazine), and lipid oxidation products (including hexanal and 2-pentylfuran) was suppressed when any of the dicarbonyl trapping agents was added. Among the water-soluble antioxidants studied, chlorogenic acid most significantly decreased the furan level, by 67.0%, followed by ferulic acid (57.6%), Trolox (50.1%), and caffeic acid (48.2%) in the CMS. Chlorogenic acid also reduced the formation of furfural and lipid oxidation products. However, the addition of caffeic acid, ferulic acid, and chlorogenic acid decreased the generation of key coffee aroma components, such as Strecker aldehydes (2-methylpropanal and 2-methylbutanal), 5-methylfurfural, and pyrazines (2,6-dimethylpyrazine and 2-ethyl-5-methylpyrazine). Among the fat-soluble antioxidants, BHT and α-tocopherol decreased the furan level by 49.3% and 39.3%, respectively, while ß-carotene increased the furan level by 34.8%. The addition of sodium sulfite and glutathione to CMS also led to considerable reductions in furan, of 64.1% and 44.9%, respectively.

20.
Int J Oral Sci ; 6(4): 205-11, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25394593

RESUMO

Histone methylation is one of the most widely studied post-transcriptional modifications. It is thought to be an important epigenetic event that is closely associated with cell fate determination and differentiation. To explore the spatiotemporal expression of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) epigenetic marks and methylation or demethylation transferases in tooth organ development, we measured the expression of SET7, EZH2, KDM5B and JMJD3 via immunohistochemistry and quantitative polymerase chain reaction (qPCR) analysis in the first molar of BALB/c mice embryos at E13.5, E15.5, E17.5, P0 and P3, respectively. We also measured the expression of H3K4me3 and H3K27me3 with immunofluorescence staining. During murine tooth germ development, methylation or demethylation transferases were expressed in a spatial-temporal manner. The bivalent modification characterized by H3K4me3 and H3K27me3 can be found during the tooth germ development, as shown by immunofluorescence. The expression of SET7, EZH2 as methylation transferases and KDM5B and JMJD3 as demethylation transferases indicated accordingly with the expression of H3K4me3 and H3K27me3 respectively to some extent. The bivalent histone may play a critical role in tooth organ development via the regulation of cell differentiation.


Assuntos
Histonas/metabolismo , Odontogênese/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/análise , Papila Dentária/embriologia , Embrião de Mamíferos , Órgão do Esmalte/embriologia , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/análise , Histona Desmetilases com o Domínio Jumonji/análise , Lisina/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Complexo Repressor Polycomb 2/análise , Germe de Dente/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...