Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(9): 15460-15471, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859195

RESUMO

In this paper, we firstly propose a method to measure the topological charges (TCs) of a circular Bessel Gaussian beam with multiple vortex singularities (CBGBMVS) by utilizing cross phase. Based on theory and experiment, the cross phase is utilized to realize the TCs measurement of the CBGBMVS in free space with different situations, such as different singularity number, TCs and singularity location. Especially, the TCs measurement method is also investigated and verified in atmosphere turbulence. Our work provides an effective and convenient way to realize the TCs measurement of multiple singularities embedded in abruptly autofocusing host beams which has plenty of potential application in optical communication.

2.
Anal Chem ; 96(1): 547-553, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38155434

RESUMO

Hydrogen (H2) fuel cells have been developed as an environmentally benign, low-carbon, and efficient energy option in the current period of promoting low-carbon activities, which offer a compelling means to reduce carbon emissions. However, the presence of carbon monoxide (CO) impurities in H2 may potentially damage the fuel cell's anode. As a result, monitoring of the CO levels in fuel cells has become a significant area of research. In this paper, a novel photoacoustic sensor is developed based on photoacoustic heterodyne technology. The sensor combines a 4.61 µm mid-infrared quantum cascade laser with a low-noise differential photoacoustic cell. This combination enables fast, real-time online detection of CO impurity concentrations in H2. Notably, the sensor requires no wavelength locking to monitor CO online in real-time and produces a single effective signal with a period of only 15 ms. Furthermore, the sensor's performance was thoroughly evaluated in terms of detection sensitivity, linearity, and long-term stability. The minimum detection limit of 11 ppb was obtained at an optimal time constant of 1 s.

3.
ACS Sens ; 8(12): 4728-4736, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38085692

RESUMO

Breath hydrogen (H2) and methane (CH4) monitoring play an important role in the diagnosis of gastrointestinal disorders, such as lactose intolerance and small intestinal bacterial overgrowth (SIBO). In this paper, the photoacoustic spectroscopy method is used for H2 gas and CH4 gas detection. We present a novel approach for H2 gas concentration measurement, which is the linear relationship between the resonant frequency of breath carbon dioxide (CO2) and the H2 concentration in a resonant photoacoustic cell. Experimental results show that the minimum detectable limits of H2, CH4, and CO2 are calculated to be 8.86, 0.56, and 145.14 ppm, respectively, which can meet the requirements of breath diagnosis.


Assuntos
Líquidos Corporais , Intolerância à Lactose , Humanos , Dióxido de Carbono , Intolerância à Lactose/diagnóstico , Testes Respiratórios/métodos , Análise Espectral
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(7): 1791-6, 2015 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-26717727

RESUMO

·OH plays a crucial role in many fields, having aroused wide public concern in the world. Atmospheric Pressure Plasma Jet, which can be achieved by portable device due to working without the vacuum environment, has the advantages of high concentration of reactive species, high electron temperature and low gas temperature. It has become an important research topic in the field of gas discharge with a strong prospect. Especially, how to induce plasma jet to produce ·OH has become a new hotpot in the field of low-temperature plasma. It has been reported that mass ·OH can be induced successfully when water vapor is added to the working gas, but it will be unstable when the concentrate of water reaches a certain degree. Thus, a device of argon plasma jet with a Ring-to-Ring Electrode Configuration has been designed to interact with water in the surrounding air to generate ·OH under atmospheric pressure. In order to increase the production of ·OH, ultrasonic atomizing device is introduced to promote water concentration around the plasma plume. The generating rule of OH(A2J) induced by water has been extensively studied under different voltages and flow rate. ·OH output induced by the plasma has been tested by emission spectrometry, and at the meanwhile, Ar atomic spectral lines at 810.41 and 811.48 nm are also recorded in order to calculate the electron temperature in argon plasma plume. The results show that the water surrounding the plasma plume can be induced to produce ·OH, and OH(A2 ∑+) output increases with the electrode voltage rising from 20 to 28 kV. When the flow rate increases from 100 to 200 L x h(-1), the OH(A2∑+) output increases, but from 200 to 600 L x h(-1), it decreases. The production rules of OH(A2∑+) is the same as that of electron temperature. Therefore, the presumption is proved that ·OH output mainly affected by electron temperature.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(7): 2012-6, 2015 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-26717769

RESUMO

A device based on electrolyte cathode atmospheric glow discharge atomic emission spectroscopy (ELCAD-AES) has been developed to determine the metal ion Pb in water. The emission intensity of Ph was significantly enhanced with the increase concentration of Pb, and the emission intensity has a linear relationship with concentration while the concentration of Pb in the range of 10-80 mg x L(-1). The effects of discharge current and easily ionizable elements on the emission spectral of Pb were investigated, and the emission intensity reached greatest when the discharge current increased to 70 mA, and the easily ionizable elements generated weak effect on the emission spectral of Pb. The effect of acidification regent on emission spectral of Pb was discussed. It was found that it perform best when acidified with HNO3, and reducing the pH can improve the emission intensity of Pb effectively. The emission intensity of Pb at different region was detected near cathode region, thus obtained the best detection position. Under the optimized experimental parameters, the detection limit of Ph was 0.7 mg x L(-1) and relative standard deviation was 1.7%. The recovery of samples was 95%-106%, result and shows that this method has better accuracy. These results provide an available method for further research of detection trace heavy mental elements in water using ELCAD-AES.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(7): 1948-51, 2010 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-20828006

RESUMO

Toxic metal elements in waters and wastewaters contaminate the environment and greatly threaten the health of human beings, therefore developing a rapid monitor for metal residues in aqueous solutions is urgently required. In the present work, a new homemade apparatus of electrolyte cathode atmospheric glow discharge emission spectroscopy was developed and described. It can detect and discriminate many kinds of trace mental elements by atomic emission spectrum from atmospheric pressure liquid cathode glow discharge. In order to estimate the analytical performance of the present atmospheric pressure electrolyte cathode glow discharge emission spectroscopy system, the detection limit values for Na, Li, Cu, Pb and Mn were obtained based on 3sigma of the background signal, and the current limits of detection were 0.008, 0.005, 1.1, 2.06 and 1.95 mg L(-1), respectively. It demonstrates that the atmospheric pressure electrolyte cathode glow discharge emission spectroscopy has a promising application in real time measurements of metal residues in aqueous solutions.


Assuntos
Eletrólitos , Metais/análise , Poluentes Químicos da Água/análise , Pressão Atmosférica , Eletrodos , Intoxicação por Metais Pesados , Íons , Limite de Detecção , Intoxicação , Análise Espectral , Água
7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(2): 289-92, 2009 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-19445187

RESUMO

In the present work, a simply designed and easy made micrometer plasma jet device operating under atmospheric pressure was characterized. The microplasma jet operates in many kinds of working gas at atmospheric pressure, such as Ar, He, N2 etc, and is powered by a direct current power source. It can generate high current density glow discharge. In order to identify various excited species generated by the direct current microplasma jet device, the optical emission spectra of the jet with argon or nitrogen as working gas were studied. Based on the optical emission spectroscopy analysis of argon microplasma jet, the electron excitation temperature was determined to be about 3 000 K by the intensity ratio of two spectral lines. It is much lower than the electron excitation temperature of atmospheric pressure plasma torch, and hints that the atmospheric pressure direct current microplasma jet is cold compared with the atmospheric pressure plasma torch. The emission spectra of the N2 second positive band system were used to determine the vibrational temperature of the atmospheric pressure direct current microplasma jet. The experimental result shows that the molecular vibrational temperature of N2 is about 2 500 K. The electron density of the microplasma jet is about 10(13) cm(-3), which can be estimated from the electrical parameters of the discharge in the microplasma jet. A simple example of application of the microplasma jet is given. General print paper surface was modified with the microplasma jet and afterwards a droplet test was carried out. It was shown that the microplasma jet is more efficient in changing the hydrophilicity of general print paper.

8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(10): 2224-7, 2008 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-19123377

RESUMO

Microhollow cathode discharge or microdischarge is an efficient method to generate plasma in a high pressure gas. In the present work, the emission spectra were observed in an atmospheric pressure argon direct current microdischarge apparatus, using a stainless steel capillary as the cathode, and a stainless steel mesh as the anode. It was shown that all of the seventeen argon spectral lines arose from electronically excited argon atom 4p-4s transition in the wavelength range of 690-860 nm. The dependences of emission intensity on the discharge current, gas pressure and argon flow rate were investigated. The experimental results show that the emission intensity increased with discharge current from 1 to 6 mA and argon flow rate from 100 to 700 mL x min(-1). The dependence of emission intensity on gas pressure exhibited different characteristics, i.e., spectral signal increased with the gas pressure, but reached the intensity maximum at 13.3 kPa, and decreased afterwards. The argon atom spectral lines 763.51 and 772.42 nm were chosen to measure the electron excitation temperature by the intensity ratio of two spectral lines. The electron excitation temperature was determined to be in the range of 2000 to 2800 K in the atmospheric pressure argon microdischarge. The changes in electron excitation temperature with discharge current, gas pressure and argon flow rate were explored, indicating that the electron excited temperature increased with the discharge current, but decreased when gas flow rate or argon pressure increased.

9.
J Environ Sci (China) ; 19(6): 751-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17969651

RESUMO

Ion mobility spectrometry (IMS) is a very fast, highly sensitive, and inexpensive technique, it permits efficient monitoring of volatile organic compounds like alcohols. In this article, positive ion mobility spectra for six alcohol organic compounds have been systematically studied for the first time using a high-resolution IMS apparatus equipped with a discharge ionization source. Utilizing protonated water cluster ions (H2O)n H+ as the reactant ions and clean air as the drift gas, alcohol organic compounds, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol and 2-octanol, all exhibit product ion characteristic peaks in their respective ion mobility spectrometry, that is a result of proton transfer reactions between the alcohols and reaction ions (H2O)n H+. The mixture of these alcohols, including two isomers, has been detected, and the results showed that they could be distinguished effectively in the ion mobility spectrum. The reduced mobility values have been determined, which are in very well agreement with the traditional 63Ni-IMS experimental values. The exponential dilution method was used to calibrate the alcohol concentrations, and a detection limit available for the alcohols is in order of magnitude of a few ng/L.


Assuntos
Poluentes Atmosféricos/análise , Álcoois/análise , Monitoramento Ambiental , Níquel , Radioisótopos , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...