Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 236(Pt 2): 116799, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37524156

RESUMO

The current sorbents used to remove Cr (VI) from electroplating wastewater are faced with some challenges including the difficulty in separating, regenerating, and safely disposing of adsorbed Cr species. To address these challenges, CuSx/TiO2 was developed to recover Cr (VI) from electroplating wastewater. CuSx/TiO2 had superior performance in removing Cr (VI), with the rate and capacity of approximately 9.36 mg g-1 h-1 and 68.8 mg g-1 at initial pH 4.0, respectively. Additionally, Cu2+ released from CuSx/TiO2 during Cr (VI) removal would come back to its external surface as the Cu(OH)2 precipitate at initial pH 4.0, which helped to prevent the generation of secondary pollution. The Cu(OH)2 precipitate would be decomposed into CuOx after calcination, which would then be transformed back into CuSx by re-sulfuration for regeneration. Hence, CuSx showed a magical induction effect on Cr (VI) recovery, and Cr (VI) from electroplating wastewater might be gradually enriched as Cr2O3 in the sandwich between CuSx and TiO2 through multiple regenerations and removals, which could be considered as a chromium ore resource for industrial applications when the amount of enriched Cr2O3 reached more than 30 wt%. Overall, CuSx/TiO2 showed great potential as a promising sorbent for Cr (VI) removal from electroplating wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...