Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 188(2): 1312-1334, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791491

RESUMO

Cold stress adversely affects plant production, both qualitatively and quantitatively. Banana (Musa acuminata) is sensitive to cold stress and suffers chilling injury (CI) when stored under 11°C, causing abnormal fruit softening. However, the mechanism underlying the abnormal fruit softening due to CI remains obscure. This study uncovered the coordinated transcriptional mechanism of ethylene F-box (EBF1) protein and abscisic acid-insensitive 5 (ABI5)-like protein in regulating chilling-induced softening disorders of Fenjiao banana. Cold stress severely inhibited the transcript and protein levels of EBF1, ABI5-like, and fruit softening-related genes. The ABI5-like protein bound to the promoters of key starch and cell wall degradation-related genes such as ß-amylase 8 (BAM8), pectate lyase 8 (PL8), and ß-D-xylosidase23-like (XYL23-like) and activated their activities. EBF1 physically interacted with ABI5-like and enhanced the transcriptional activity of the key starch and cell wall degradation-related genes but did not ubiquitinate or degrade ABI5-like protein. This promoted fruit ripening and ameliorated fruit CI in a manner similar to the effect of exogenous abscisic acid treatment. The ectopic and transient overexpression of EBF1 and ABI5-like genes in tomato (Solanum lycopersicum) and Fenjiao banana accelerated fruit ripening and softening by promoting ethylene production, starch and cell wall degradation, and decreasing fruit firmness. EBF1 interacted with EIL4 but did not ubiquitinate or degrade EIL4, which is inconsistent with the typical role of EBF1/2 in Arabidopsis (Arabidopsis thaliana). These results collectively highlight that the interaction of EBF1 and ABI5-like controls starch and cell wall metabolism in banana, which is strongly inhibited by chilling stress, leading to fruit softening and ripening disorder.


Assuntos
Ácido Abscísico/metabolismo , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Proteínas F-Box/metabolismo , Frutas/genética , Frutas/metabolismo , Musa/genética , Musa/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fatores de Transcrição
2.
Biomolecules ; 9(10)2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31575083

RESUMO

Low-temperature storage is a common strategy for preserving and transporting vegetables and fruits. However, many fruits are hypersensitive to chilling injury, including bananas. In the present study, storage conditions of 11 °C delayed the ripening of Fenjiao (Musa ABB Pisang Awak) banana, and the pulp could be softened after ethephon treatment. Storage conditions of 7 °C prevented fruit from fully softening, and fruit contained a significantly higher starch content and lower soluble sugar content. MaEBF1, a critical gene component in the ethylene signaling pathway, was repressed during ripening after fruit had been stored for 12 days at 7 °C. The expression of a series of starch degradation-related genes and a MaNAC67-like gene were also severely repressed. Both MaEBF1 and MaNAC67-like genes were ethylene-inducible and localized in the nucleus. MaNAC67-like protein was able to physically bind to the promoter of genes associated with starch degradation, including MaBAM6, MaSEX4, and MaMEX1. Yeast two-hybrid, GST-pull down, and BiFC assays showed that MaEBF1 interacted with the MaNAC67-like protein, and their interaction further activated the promoters of MaBAM6 and MaSEX4. The current study indicates that MaNAC67-like is a direct regulator of starch degradation and potential for involvement in regulating chilling-inhibited starch degradation by interacting with the ethylene signaling components in banana fruit. The present work paves the way for further functional analysis of MaEBF1 and MaNAC67-like in banana, which will be useful for understanding the regulation of banana starch metabolism and fruit ripening.


Assuntos
Proteínas F-Box/metabolismo , Musa/fisiologia , Proteínas de Plantas/metabolismo , Amido/química , Temperatura Baixa , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Musa/metabolismo , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Estresse Fisiológico
3.
Food Sci Nutr ; 7(2): 395-403, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847116

RESUMO

The effects of putrescine (Put) treatment on postharvest physiology characteristics in cowpea during cold storage have been investigated. The results indicated that Put with 8 mmol/L treatment greatly delayed aging of the cowpea; the sensory quality of cowpea was well maintained; the increase in weight loss was also inhibited, and the decrease in the content of ascorbic acid, chlorophyll, and total phenol was reduced efficiently. Antioxidant enzyme activities containing POD, CAT, and APX were preserved at higher levels in treated groups than the control during cold storage. In addition, the activity of PPO was restrained with Put. Overall, the quality of cowpea was maintained by 8 mmol/L Put treatment during cold storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...