Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-34281124

RESUMO

In recent years, much more emphasis than before has been placed on fire safety regulations by the local and central authorities of China, which makes fire risk assessments more important. In this paper we propose a new fire risk assessment approach for large-scale commercial and high-rise buildings that aims to evaluate the performances of their fire safety systems; this should improve the fire risk management and public safety in those buildings. According to the features of large-scale commercial and high-rise buildings, a fire-risk indexing system was built, and based on it we established a scientific fire risk evaluation system. To this end, the fuzzy analytic hierarchy process (FAHP) was used to assign a reasonable weight to each fire risk factor in the evaluation system. In addition, we revised the original scores by analyzing the coupling relationships among the fire risk factors. To validate our system, we selected 11 buildings in Shandong province and collected their fire safety data. Then, we calculated the final scores for the fire safety management of those buildings, and the results show that: (1) our fire risk evaluation system can assign reasonable weights; (2) the proposed evaluation system is comprehensive and has strong interpretability, since it exploits the coupling relationships among the risk factors. The novelty of the proposed approach lies in that it integrates opinions from multiple experts and utilizes coupling relationships among the factors. Further, the feedback from the approach can find not only the weaknesses in fire risk management, but also the potential causes of fires. As a result, the feedback from our assessment can assist the safety chiefs and inspectors with improving fire risk management.


Assuntos
Processo de Hierarquia Analítica , Gestão da Segurança , China , Medição de Risco , Fatores de Risco
3.
Nat Chem Biol ; 17(7): 806-816, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958792

RESUMO

The central dogma of biology does not allow for the study of glycans using DNA sequencing. We report a liquid glycan array (LiGA) platform comprising a library of DNA 'barcoded' M13 virions that display 30-1,500 copies of glycans per phage. A LiGA is synthesized by acylation of the phage pVIII protein with a dibenzocyclooctyne, followed by ligation of azido-modified glycans. Pulldown of the LiGA with lectins followed by deep sequencing of the barcodes in the bound phage decodes the optimal structure and density of the recognized glycans. The LiGA is target agnostic and can measure the glycan-binding profile of lectins, such as CD22, on cells in vitro and immune cells in a live mouse. From a mixture of multivalent glycan probes, LiGAs identify the glycoconjugates with optimal avidity necessary for binding to lectins on living cells in vitro and in vivo.


Assuntos
Bacteriófago M13/química , Análise em Microsséries , Polissacarídeos/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófago M13/genética , Bacteriófago M13/metabolismo , Camundongos , Polissacarídeos/genética , Polissacarídeos/metabolismo
4.
Anal Chem ; 93(9): 4231-4239, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33630563

RESUMO

Interactions between carbohydrates (glycans) and glycan-binding proteins (GBPs) regulate a wide variety of important biological processes. However, the affinities of most monovalent glycan-GBP complexes are typically weak (dissociation constant (Kd) > µM) and difficult to reliably measure with conventional assays; consequently, the glycan specificities of most GBPs are not well established. Here, we demonstrate how electrospray ionization mass spectrometry (ESI-MS), implemented with nanoflow ESI emitters with inner diameters of ∼50 nm, allows for the facile quantification of low-affinity glycan-GBP interactions. The small size of the droplets produced from these submicron emitters effectively eliminates the formation of nonspecific glycan-GBP binding (false positives) during the ESI process up to ∼mM glycan concentrations. Thus, interactions with affinities as low as ∼5 mM can be measured directly from the mass spectrum. The general suppression of nonspecific adducts (including nonvolatile buffers and salts) achieved with these tips enables ESI-MS glycan affinity measurements to be performed on C-type lectins, a class of GBPs that bind glycans in a calcium-dependent manner and are important regulators of immune response. At physiologically relevant calcium ion concentrations (2-3 mM), the extent of Ca2+ nonspecific adduct formation observed using the submicron emitters is dramatically suppressed, allowing glycan affinities, and the influence of Ca2+ thereon, to be measured. Finally, we show how the use of submicron emitters and suppression of nonspecific binding enable the quantification of labile (prone to in-source dissociation) glycan-GBP interactions.


Assuntos
Polissacarídeos , Espectrometria de Massas por Ionização por Electrospray , Proteínas de Transporte/metabolismo , Ligação Proteica , Proteínas/metabolismo
5.
Anal Chem ; 92(20): 14189-14196, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32940034

RESUMO

Interactions between glycan-binding proteins (GBPs) and glycosphingolipids (GSLs) in the membranes of cells are implicated in a wide variety of normal and pathophysiological processes. Despite the critical biological roles these interactions play, the GSL ligands of most GBPs have not yet been identified. The limited availability of purified GSLs represents a significant challenge to the discovery and characterization of biologically relevant GBP-GSL interactions. The present work investigates the use of neoglycolipids (NGLs) as surrogates for GSLs for catch-and-release-electrospray ionization mass spectrometry (CaR-ESI-MS)-based screening, implemented with nanodiscs, for the discovery of GSL ligands. Three pairs of NGLs based on the blood group type A and B trisaccharides, with three different lipid head groups but all with "ring-closed" monosaccharide residue at the reducing end, were synthesized. The incorporation efficiencies (into nanodiscs) of the NGLs and their affinities for a fragment of family 51 carbohydrate-binding module (CBM) identified an amide-linked 1,3-di-O-hexadecyl-glycerol moiety as the optimal lipid structure. Binding measurements performed on cholera toxin B subunit homopentamer (CTB5) and nanodiscs containing an NGL consisting of the optimal lipid moiety and the GM1 ganglioside pentasaccharide yielded affinities similar, within a factor of 2, to those of native GM1. Finally, nanodiscs containing the optimal A and B trisaccharide NGLs, as well as the corresponding NGLs of lactose, A type 2 tetrasaccharide, and the GM1 and GD2 pentasaccharides were screened against the family 51 CBM, human galectin-7, and CTB5 to illustrate the potential of NGLs to accelerate the discovery of GSL ligands of GBPs.


Assuntos
Glicoesfingolipídeos/química , Nanoestruturas/química , Polissacarídeos/química , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sítios de Ligação , Técnicas Biossensoriais , Toxina da Cólera/química , Galectinas/química , Glicerol/química , Glicosilação , Humanos , Ligantes , Ligação Proteica , Multimerização Proteica
6.
Nat Commun ; 11(1): 3396, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636380

RESUMO

Arabinosyltransferase B (EmbB) belongs to a family of membrane-bound glycosyltransferases that build the lipidated polysaccharides of the mycobacterial cell envelope, and are targets of anti-tuberculosis drug ethambutol. We present the 3.3 Å resolution single-particle cryo-electron microscopy structure of Mycobacterium smegmatis EmbB, providing insights on substrate binding and reaction mechanism. Mutations that confer ethambutol resistance map mostly around the putative active site, suggesting this to be the location of drug binding.


Assuntos
Mycobacterium smegmatis/enzimologia , Pentosiltransferases/química , Pentosiltransferases/ultraestrutura , Antituberculosos/farmacologia , Domínio Catalítico , Microscopia Crioeletrônica , Farmacorresistência Bacteriana , Etambutol/farmacologia , Lipídeos/química , Mutação , Mycobacterium tuberculosis/enzimologia , Polissacarídeos/química , Ligação Proteica
7.
Mol Cell ; 78(4): 683-699.e11, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32386575

RESUMO

Mycobacterium tuberculosis causes tuberculosis, a disease that kills over 1 million people each year. Its cell envelope is a common antibiotic target and has a unique structure due, in part, to two lipidated polysaccharides-arabinogalactan and lipoarabinomannan. Arabinofuranosyltransferase D (AftD) is an essential enzyme involved in assembling these glycolipids. We present the 2.9-Å resolution structure of M. abscessus AftD, determined by single-particle cryo-electron microscopy. AftD has a conserved GT-C glycosyltransferase fold and three carbohydrate-binding modules. Glycan array analysis shows that AftD binds complex arabinose glycans. Additionally, AftD is non-covalently complexed with an acyl carrier protein (ACP). 3.4- and 3.5-Å structures of a mutant with impaired ACP binding reveal a conformational change, suggesting that ACP may regulate AftD function. Mutagenesis experiments using a conditional knockout constructed in M. smegmatis confirm the essentiality of the putative active site and the ACP binding for AftD function.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Microscopia Crioeletrônica/métodos , Glicosiltransferases/metabolismo , Mycobacterium smegmatis/enzimologia , Proteína de Transporte de Acila/genética , Proteínas de Bactérias/genética , Domínio Catalítico , Parede Celular/metabolismo , Galactanos/metabolismo , Glicosiltransferases/genética , Lipopolissacarídeos/metabolismo , Mutação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Filogenia , Conformação Proteica , Especificidade por Substrato
8.
Sci Rep ; 8(1): 17566, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514885

RESUMO

Galactofuranosyltransferases are poorly described enzymes despite their crucial role in the virulence and the pathogenicity of numerous microorganisms. These enzymes are considered as potential targets for therapeutic action. In addition to the only well-characterised prokaryotic GlfT2 from Mycobacterium tuberculosis, four putative genes in Leishmania major were previously described as potential galactofuranosyltransferases. In this study, we have cloned, over-expressed, purified and fully determined the kinetic parameters of these four eukaryotic enzymes, thus demonstrating their unique potency in catalysing the transfer of the galactofuranosyl moiety into acceptors. Their individual promiscuity revealed to be different, as some of them could efficiently use NDP-pyranoses as donor substrates in addition to the natural UDP-galactofuranose. Such results pave the way for the development of chemoenzymatic synthesis of furanosyl-containing glycoconjugates as well as the design of improved drugs against leishmaniasis.


Assuntos
Galactose/análogos & derivados , Galactosiltransferases/biossíntese , Galactosiltransferases/química , Leishmania major/enzimologia , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/química , Difosfato de Uridina/análogos & derivados , Biocatálise , Escherichia coli/genética , Galactose/metabolismo , Cinética , Especificidade por Substrato , Difosfato de Uridina/metabolismo
9.
J Med Chem ; 61(24): 11261-11279, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30457869

RESUMO

Inhibitors of human neuraminidase enzymes (NEU) are recognized as important tools for the study of the biological functions of NEU and will be potent tools for elucidating the role of these enzymes in regulating the repertoire of cellular glycans. Here we report the discovery of selective inhibitors of the human neuraminidase 1 (NEU1) and neuraminidase 2 (NEU2) enzymes with exceptional potency. A library of modified 2-deoxy-2,3-didehydro- N-acetylneuraminic acid (DANA) analogues, with variability in the C5- or C9-position, were synthesized and evaluated against four human neuraminidase isoenyzmes (NEU1-4). Hydrophobic groups with an amide linker at the C5 and C9 positions were well accommodated by NEU1, and a hexanamido group was found to give the best potency at both positions. While the C5-hexanamido-C9-hexanamido-DANA analogue did not show synergistic improvements for combined modification, an extended alkylamide at an individual position combined with a smaller group at the second gave increased potency. The best NEU1 inhibitor identified was a C5-hexanamido-C9-acetamido-DANA that had a Ki of 53 ± 5 nM and 340-fold selectivity over other isoenzymes. Additionally, we demonstrated that C5-modifications combined with a C4-guandino group provided the most potent NEU2 inhibitor reported, with a Ki of 1.3 ± 0.2 µM and 7-fold selectivity over other NEU isoenzymes.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Neuraminidase/antagonistas & inibidores , Amidas/química , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuraminidase/genética , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
10.
J Clin Microbiol ; 56(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30257899

RESUMO

The only currently commercialized point-of-care assay for tuberculosis (TB) that measures lipoarabinomannan (LAM) in urine (Alere LF-LAM) has insufficient sensitivity. We evaluated the potential of 100 novel monoclonal antibody pairs targeting a variety of LAM epitopes on a sensitive electrochemiluminescence platform to improve the diagnostic accuracy. In the screening, many antibody pairs showed high reactivity to purified LAM but performed poorly at detecting urinary LAM in clinical samples, suggesting differences in antigen structure and immunoreactivity of the different LAM sources. The 12 best antibody pairs from the screening were tested in a retrospective case-control study with urine samples from 75 adults with presumptive TB. The best antibody pair reached femtomolar analytical sensitivity for LAM detection and an overall clinical sensitivity of 93% (confidence interval [CI], 80% to 97%) and specificity of 97% (CI, 85% to 100%). Importantly, in HIV-negative subjects positive for TB by sputum smear microscopy, the test achieved a sensitivity of 80% (CI, 55% to 93%). This compares to an overall sensitivity of 33% (CI, 20% to 48%) of the Alere LF-LAM and a sensitivity of 13% (CI, 4% to 38%) in HIV-negative subjects in the same sample set. The capture antibody targets a unique 5-methylthio-d-xylofuranose (MTX)-dependent epitope in LAM that is specific to the Mycobacterium tuberculosis complex and shows no cross-reactivity with fast-growing mycobacteria or other bacteria. The present study provides evidence that improved assay methods and reagents lead to increased diagnostic accuracy. The results of this work have informed the development of a sensitive and specific novel LAM point-of-care assay with the aim to meet the WHO's performance target for TB diagnosis.


Assuntos
Antígenos de Bactérias/imunologia , Testes Diagnósticos de Rotina/métodos , Imunoensaio , Lipopolissacarídeos/imunologia , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/diagnóstico , Infecções Oportunistas Relacionadas com a AIDS/diagnóstico , Infecções Oportunistas Relacionadas com a AIDS/microbiologia , Adulto , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/química , Estudos de Casos e Controles , Testes Diagnósticos de Rotina/normas , Epitopos/imunologia , Feminino , Humanos , Lipopolissacarídeos/química , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Sistemas Automatizados de Assistência Junto ao Leito , Estudos Retrospectivos , Sensibilidade e Especificidade , Escarro/microbiologia , Tuberculose/microbiologia , Organização Mundial da Saúde
11.
Glycobiology ; 28(8): 624-636, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29873711

RESUMO

Homologous glycosyltransferases GTA and GTB perform the final step in human ABO(H) blood group A and B antigen synthesis by transferring the sugar moiety from donor UDP-GalNAc/UDP-Gal to the terminal H antigen disaccharide acceptor. Like other GT-A fold family 6 glycosyltransferases, GTA and GTB undergo major conformational changes in two mobile regions, the C-terminal tail and internal loop, to achieve the closed, catalytic state. These changes are known to establish a salt bridge network among conserved active site residues Arg188, Asp211 and Asp302, which move to accommodate a series of discrete donor conformations while promoting loop ordering and formation of the closed enzyme state. However, the individual significance of these residues in linking these processes remains unclear. Here, we report the kinetics and high-resolution structures of GTA/GTB mutants of residues 188 and 302. The structural data support a conserved salt bridge network critical to mobile polypeptide loop organization and stabilization of the catalytically competent donor conformation. Consistent with the X-ray crystal structures, the kinetic data suggest that disruption of this salt bridge network has a destabilizing effect on the transition state, emphasizing the importance of Arg188 and Asp302 in the glycosyltransfer reaction mechanism. The salt bridge network observed in GTA/GTB structures during substrate binding appears to be conserved not only among other Carbohydrate Active EnZyme family 6 glycosyltransferases but also within both retaining and inverting GT-A fold glycosyltransferases. Our findings augment recently published crystal structures, which have identified a correlation between donor substrate conformational changes and mobile loop ordering.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Glicosiltransferases/química , Sistema ABO de Grupos Sanguíneos/genética , Sistema ABO de Grupos Sanguíneos/metabolismo , Arginina/química , Arginina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Domínios Proteicos
12.
J Immunol ; 200(9): 3053-3066, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29610143

RESUMO

Lipoarabinomannan (LAM), the major antigenic glycolipid of Mycobacterium tuberculosis, is an important immunodiagnostic target for detecting tuberculosis (TB) infection in HIV-1-coinfected patients, and is believed to mediate a number of functions that promote infection and disease development. To probe the human humoral response against LAM during TB infection, several novel LAM-specific human mAbs were molecularly cloned from memory B cells isolated from infected patients and grown in vitro. The fine epitope specificities of these Abs, along with those of a panel of previously described murine and phage-derived LAM-specific mAbs, were mapped using binding assays against LAM Ags from several mycobacterial species and a panel of synthetic glycans and glycoconjugates that represented diverse carbohydrate structures present in LAM. Multiple reactivity patterns were seen that differed in their specificity for LAM from different species, as well as in their dependence on arabinofuranoside branching and nature of capping at the nonreducing termini. Competition studies with mAbs and soluble glycans further defined these epitope specificities and guided the design of highly sensitive immunodetection assays capable of detecting LAM in urine of TB patients, even in the absence of HIV-1 coinfection. These results highlighted the complexity of the antigenic structure of LAM and the diversity of the natural Ab response against this target. The information and novel reagents described in this study will allow further optimization of diagnostic assays for LAM and may facilitate the development of potential immunotherapeutic approaches to inhibit the functional activities of specific structural motifs in LAM.


Assuntos
Especificidade de Anticorpos/imunologia , Lipopolissacarídeos/imunologia , Mycobacterium tuberculosis/imunologia , Animais , Mapeamento de Epitopos , Humanos , Camundongos
13.
Glycobiology ; 28(7): 488-498, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29562255

RESUMO

Human noroviruses (HuNoVs) are a major cause of acute gastroenteritis. Many HuNoVs recognize histo-blood group antigens (HBGAs) as cellular receptors or attachment factors for infection. It was recently proposed that HuNoV recognition of HBGAs involves a cooperative, multistep binding mechanism that exploits both known and previously unknown glycan binding sites. In this study, binding measurements, implemented using electrospray ionization mass spectrometry (ESI-MS) were performed on homodimers of the protruding domain (P dimers) of the capsid protein of three HuNoV strains [Saga (GII.4), Vietnam 026 (GII.10) and VA387 (GII.4)] with the ethyl glycoside of the B trisaccharide (α-d-Gal-(1→3)-[α-l-Fuc-(1→2)]-ß-d-Gal-OC2H5) and free B type 1 tetrasaccharide (α-d-Gal-(1→3)-[α-l-Fuc-(1→2)]-ß-d-Gal-(1→3)-d-GlcNAc) in an effort to confirm the existence of new HBGA binding sites. After correcting the mass spectra for nonspecific interactions that form in ESI droplets as they evaporate to dryness, all three P dimers were found to bind a maximum of two B trisaccharides at the highest concentrations investigated. The apparent affinities measured for stepwise binding of B trisaccharide suggest positive cooperativity. Similar results were obtained for B type 1 tetrasaccharide binding to Saga P dimer. Based on these results, it is proposed that HuNoV P dimers possess only two HBGA binding sites. It is also shown that nonspecific binding corrections applied to mass spectra acquired using energetic ion source conditions that promote in-source dissociation can lead to apparent HuNoV-HBGA oligosaccharide binding stoichiometries and affinities that are artificially high. Finally, evidence that high concentrations of oligosaccharide can induce conformational changes in HuNoV P dimers is presented.


Assuntos
Anticorpos Antivirais/imunologia , Reações Antígeno-Anticorpo , Antígenos de Grupos Sanguíneos/imunologia , Norovirus/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Humanos , Trissacarídeos/química , Trissacarídeos/metabolismo
14.
Org Biomol Chem ; 16(11): 1939-1957, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29492483

RESUMO

Mycobacteria, including the human pathogen Mycobacterium tuberculosis, produce a complex cell wall that is critical for their survival. The largest structural component of the cell wall, the mycolyl-arabinogalactan-peptidoglycan complex, has at its core a galactan domain composed of d-galactofuranose residues. Mycobacterial galactan biosynthesis has been proposed to involve two glycosyltransferases, GlfT1 and GlfT2, which elongate polyprenol-pyrophosphate linked glycosyl acceptor substrates using UDP-galactofuranose as the donor substrate. We here report the first chemical synthesis of GlfT1 and GlfT2 acceptor substrates containing pyrophosphate and polyprenol moieties (compounds 3, 4, 22 and 23). The approach involves chemical synthesis of an oligosaccharide, subsequent phosphorylation at the reducing end and coupling to a polyprenol phosphate. These compounds were shown to be substrates for either GlfT1 (22 and 23) or GlfT2 (3 and 4) and all were substantially more active than the corresponding alkyl glycoside substrates reported previously. Mass spectrometric analysis of the products formed from the reaction of 3, 4, 22 and 23 with the respective cognate enzyme and UDP-galactofuranose provide additional evidence for the galactan biosynthetic model in which GlfT1 adds the first two galactofuranose residues with the remainder being installed via GlfT2. Overall, these results highlight the importance of the pyrophosphate motif in recognition of acceptor substrates by both enzymes and demonstrate a straightforward route for the preparation of such compounds. The work also provides additional support for the process by which this important glycan is biosynthesized using, for the first time, close structural analogs to the natural substrates.


Assuntos
Difosfatos/metabolismo , Galactanos/metabolismo , Galactosiltransferases/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Oligossacarídeos/metabolismo , Difosfatos/síntese química , Difosfatos/química , Hemiterpenos , Humanos , Oligossacarídeos/síntese química , Oligossacarídeos/química , Pentanóis/síntese química , Pentanóis/química , Pentanóis/metabolismo , Especificidade por Substrato , Tuberculose/microbiologia
15.
Carbohydr Res ; 461: 45-50, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29579477

RESUMO

The convenient preparation of iminopentitol derivatives, based on a 1,4-dideoxy-1,4-imino-l-arabinitol scaffold carrying ß-phosphono(difluoromethyl) or ß-phosphonomethyl appendages, as Galf-1P mimics, is reported. The compounds were tested for their ability to inhibit GlfT2, a vital galactofuranosyltransferase involved in the cell wall biosynthesis of mycobacteria. Interestingly, the Galf-1P mimics lacking a fluorine atom (7 and 8) were very poor inhibitors, showing less than 20% inhibition of GlfT2, whereas compounds 2 and 3, which contains a difluoromethylenephosphonate moiety were more potent inhibitors. Compound 3 that is fully deprotected was the most potent showing a significant IC50 value (0.9 mm), despite the absence of the diphosphate linkage present in the parent sugar nucleotide. This study paves the way to the synthesis of more complex ß-phosphonomethyl-imino-l-arabinitol derivatives as simplified mimics of UDP-α-d-Galf.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Galactosiltransferases/antagonistas & inibidores , Antibacterianos/química , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Estereoisomerismo
16.
J Med Chem ; 61(5): 1990-2008, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425031

RESUMO

Human neuraminidases (NEU) are associated with human diseases including cancer, atherosclerosis, and diabetes. To obtain small molecule inhibitors as research tools for the study of their biological functions, we designed a library of 2-deoxy-2,3-didehydro- N-acetylneuraminic acid (DANA) analogues with modifications at C4 and C9 positions. This library allowed us to discover selective inhibitors targeting the human NEU3 isoenzyme. Our most selective inhibitor for NEU3 has a Ki of 320 ± 40 nM and a 15-fold selectivity over other human neuraminidase isoenzymes. This inhibitor blocks glycolipid processing by NEU3 in vitro. To improve their pharmacokinetic properties, various esters of the best inhibitors were synthesized and evaluated. Finally, we confirmed that our best compounds exhibited selective inhibition of NEU orthologues from murine brain.


Assuntos
Ácido N-Acetilneuramínico/análogos & derivados , Neuraminidase/antagonistas & inibidores , Animais , Inibidores Enzimáticos/farmacologia , Humanos , Isoenzimas , Camundongos , Bibliotecas de Moléculas Pequenas
17.
PLoS One ; 12(10): e0184378, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29016609

RESUMO

Glycoprotein receptors are influenced by myriad intermolecular interactions at the cell surface. Specific glycan structures may interact with endogenous lectins that enforce or disrupt receptor-receptor interactions. Glycoproteins bound by multivalent lectins may form extended oligomers or lattices, altering the lateral mobility of the receptor and influencing its function through endocytosis or changes in activation. In this study, we have examined the interaction of Galectin-3 (Gal-3), a human lectin, with adhesion receptors. We measured the effect of recombinant Gal-3 added exogenously on the lateral mobility of the α5ß1 integrin on HeLa cells. Using single-particle tracking (SPT) we detected increased lateral mobility of the integrin in the presence of Gal-3, while its truncated C-terminal domain (Gal-3C) showed only minor reductions in lateral mobility. Treatment of cells with Gal-3 increased ß1-integrin mediated migration with no apparent changes in viability. In contrast, Gal-3C decreased both cell migration and viability. Fluorescence microscopy allowed us to confirm that exogenous Gal-3 resulted in reorganization of the integrin into larger clusters. We used a proteomics analysis to confirm that cells expressed endogenous Gal-3, and found that addition of competitive oligosaccharide ligands for the lectin altered the lateral mobility of the integrin. Together, our results are consistent with a Gal-3-integrin lattice model of binding and confirm that the lateral mobility of integrins is natively regulated, in part, by galectins.


Assuntos
Endocitose/genética , Galectina 3/genética , Integrina alfa5beta1/metabolismo , Proteômica , Adesão Celular/genética , Movimento Celular/efeitos dos fármacos , Galectina 3/administração & dosagem , Regulação da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HeLa , Humanos , Integrina alfa5beta1/genética , Oligossacarídeos/metabolismo , Ligação Proteica
18.
ACS Chem Biol ; 12(12): 2990-3002, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29048873

RESUMO

An array of homogeneous glycans representing all the major carbohydrate structures present in the cell wall of the human pathogen Mycobacterium tuberculosis and other mycobacteria has been probed with a panel of glycan-binding receptors expressed on cells of the mammalian innate immune system. The results provide an overview of interactions between mycobacterial glycans and receptors that mediate uptake and survival in macrophages, dendritic cells, and sinusoidal endothelial cells. A subset of the wide variety of glycan structures present on mycobacterial surfaces interact with cells of the innate immune system through the receptors tested. Endocytic receptors, including the mannose receptor, DC-SIGN, langerin, and DC-SIGNR (L-SIGN), interact predominantly with mannose-containing caps found on the mycobacterial polysaccharide lipoarabinomannan. Some of these receptors also interact with phosphatidyl-myo-inositol mannosides and mannose-containing phenolic glycolipids. Many glycans are ligands for overlapping sets of receptors, suggesting multiple, redundant routes by which mycobacteria can enter cells. Receptors with signaling capability interact with two distinct sets of mycobacterial glycans: targets for dectin-2 overlap with ligands for the mannose-binding endocytic receptors, while mincle binds exclusively to trehalose-containing structures such as trehalose dimycolate. None of the receptors surveyed bind furanose residues, which often form part of the epitopes recognized by antibodies to mycobacteria. Thus, the innate and adaptive immune systems can target different sets of mycobacterial glycans. This array, the first of its kind, represents an important new tool for probing, at a molecular level, biological roles of a broad range of mycobacterial glycans, a task that has not previously been possible.


Assuntos
Mycobacterium/química , Polissacarídeos/química , Polissacarídeos/imunologia , Imunidade Inata , Análise em Microsséries/métodos , Mycobacterium/metabolismo , Soroalbumina Bovina
19.
Glycobiology ; 27(4): 370-380, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979997

RESUMO

The homologous glycosyltransferases α-1,3-N-acetylgalactosaminyltransferase (GTA) and α-1,3-galactosyltransferase (GTB) carry out the final synthetic step of the closely related human ABO(H) blood group A and B antigens. The catalytic mechanism of these model retaining enzymes remains under debate, where Glu303 has been suggested to act as a putative nucleophile in a double displacement mechanism, a local dipole stabilizing the intermediate in an orthogonal associative mechanism or a general base to stabilize the reactive oxocarbenium ion-like intermediate in an SNi-like mechanism. Kinetic analysis of GTA and GTB point mutants E303C, E303D, E303Q and E303A shows that despite the enzymes having nearly identical sequences, the corresponding mutants of GTA/GTB have up to a 13-fold difference in their residual activities relative to wild type. High-resolution single crystal X-ray diffraction studies reveal, surprisingly, that the mutated Cys, Asp and Gln functional groups are no more than 0.8 Å further from the anomeric carbon of donor substrate compared to wild type. However, complicating the analysis is the observation that Glu303 itself plays a critical role in maintaining the stability of a strained "double-turn" in the active site through several hydrogen bonds, and any mutation other than E303Q leads to significantly higher thermal motion or even disorder in the substrate recognition pockets. Thus, there is a remarkable juxtaposition of the mutants E303C and E303D, which retain significant activity despite disrupted active site architecture, with GTB/E303Q, which maintains active site architecture but exhibits zero activity. These findings indicate that nucleophilicity at position 303 is more catalytically valuable than active site stability and highlight the mechanistic elasticity of these enzymes.


Assuntos
Sistema ABO de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/genética , Galactosiltransferases/genética , Sistema ABO de Grupos Sanguíneos/química , Sistema ABO de Grupos Sanguíneos/imunologia , Sequência de Aminoácidos/genética , Antígenos de Grupos Sanguíneos/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Galactosiltransferases/química , Humanos , Ligação de Hidrogênio , Cinética , Mutação , Mutação Puntual , Especificidade por Substrato
20.
Chemistry ; 22(44): 15913-15920, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27628709

RESUMO

This study reports a new methodology to synthesize exo-glycals bearing both a sulfone and a phosphonate. This synthetic strategy provides a way to generate exo-glycals displaying two electron-withdrawing groups and was applied to eight different carbohydrates from the furanose and pyranose series. The Z/E configurations of these tetrasubstituted enol ethers could be ascertained using NMR spectroscopic techniques. Deprotection of an exo-glycal followed by an UMP (uridine monophosphate) coupling generated two new UDP (uridine diphosphate)-galactofuranose analogues. These two Z/E isomers were evaluated as inhibitors of UGM, GlfT1, and GlfT2, the three mycobacterial galactofuranose processing enzymes. Molecule 46-(E) is the first characterized inhibitor of GlfT1 reported to date and was also found to efficiently inhibit UGM in a reversible manner. Interestingly, GlfT2 showed a better affinity for the (Z) isomer. The three enzymes studied in the present work are not only interesting because, mechanistically, they are still the topic of intense investigations, but also because they constitute very important targets for the development of novel antimycobacterial agents.


Assuntos
Carboidratos/síntese química , Éteres/química , Mycobacterium/química , Difosfato de Uridina/química , Carboidratos/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...