Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1344717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533402

RESUMO

With global climate change and rising temperatures, rainfall will change. The impact of global rainfall changes on ecosystems has prompted people to delve deeper into how changes in rainfall affect plant growth; Plant biomass, nutrient element content, and non-structural carbohydrate content are very sensitive to changes in precipitation. Therefore, understanding the impact of rainfall changes on seedlings is crucial. However, it is currently unclear how the seedlings of Fraxinus malacophylla Hemsl in rocky desertification areas respond to changes in rainfall. In this study, the response of biomass, nutrient accumulation, and NSC content of Fraxinus malacophylla Hemsl seedlings to different rainfall intervals and rainfall during the dry and rainy seasons was studied. Use natural rainfall duration of 5 days (T) and extended rainfall duration of 10 days(T+) as rainfall intervals; average monthly rainfall was used as the control (W), with a corresponding 40% increase in rainfall (W+) and a 40% decrease in rainfall (W-) as rainfall treatments. The research results indicate that the biomass of roots, stems, and leaves, as well as the accumulation of C, N, and P in Fraxinus malacophylla Hemsl seedlings increase with the increase of rainfall, while the soluble sugar and starch content show a pattern of first increasing and then decreasing. The biomass and nutrient accumulation of each organ showed root>leaf>stem. Except for the beginning of the dry season, prolonging the duration of rainfall in other periods inhibits the biomass accumulation of Fraxinus malacophylla Hemsl seedlings, and promotes the accumulation of C, N, and P nutrients and an increase in soluble sugar and starch content. There was a significant positive correlation (P<0.05) between the nutrient contents of C, N, and P in various organs, as well as between soluble sugar and starch content; And N: P>16, plant growth is limited by P element. These results indicate that changes in rainfall can affect the growth and development of Fraxinus malacophylla Hemsl seedlings, increasing rainfall can promote biomass and nutrient accumulation of Fraxinus malacophylla Hemsl seedlings, and prolonging rainfall intervals and reducing rainfall have inhibitory effects on them. The exploration of the adaptation of Fraxinus malacophylla Hemsl seedlings to rainfall patterns has promoted a basic understanding of the impact of rainfall changes on the growth of Fraxinus malacophylla Hemsl. This provides a theoretical basis for understanding how Fraxinus malacophylla Hemsl can grow better under rainfall changes and for future management of Fraxinus malacophylla Hemsl artificial forests in rocky desertification areas.

2.
Environ Sci Pollut Res Int ; 30(52): 112892-112907, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37840082

RESUMO

Coal spontaneous combustion in the gob poses a significant threat to coal mining operations. Designing optimal process parameters for nitrogen injection to prevent and control fires efficiently is crucial. To achieve this, a multi-field coupling equation was established, considering the adsorption of coal to gas. The model's accuracy was verified on-site, and the effects of nitrogen injection at different locations and flow rates were simulated. The optimal injection parameters were determined by analyzing temperature and inerting time. The results showed that the coal spontaneous combustion hazardous zone in the gob tested on-site was consistent with the simulation from the perspective of physisorption. Nitrogen injection had three stages: gas expansion, rapid oxygen dilution, and complete inerting. The nitrogen injection effect presented a nonlinear change in injection location and flow rate. The optimal nitrogen injection location for the Tingnan Coal Mine in Shaanxi was determined to be 90 m behind the working face on the inlet side, with an optimal flow rate of 800 m3/min. This study focused on gas adsorption and offered valuable insights for creating high-efficiency fire-fighting techniques that involve inserting in the gob.


Assuntos
Minas de Carvão , Incêndios , Combustão Espontânea , Carvão Mineral , Adsorção , Incêndios/prevenção & controle , Minas de Carvão/métodos , Nitrogênio
3.
Immun Inflamm Dis ; 11(3): e816, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36988250

RESUMO

BACKGROUND: Natural cytotoxicity receptor negative innate lymphoid cell (NCR- ILC3) involves into mucosal homeostasis, inflammation regulation and tissue remodeling. The proportion of NCR- ILC3 is increased in the lung of smokers with chronic obstructive pulmonary disease (COPD). However, there's still few understandings on the role of NCR- ILC3 in COPD pathogenesis. METHODS: COPD mice were induced by cigarette smoking. The pathology in lung was detected in histology. The frequency of NCR- ILC3 (CD3-CD45+RORγt+NkP46-) from murine lung was detected using flow cytometry. IL-17+RORγt+ double positive cells in lung were assessed by double immunofluorescence staining. The protein expressions of epithelial-to-mesenchymal transition (EMT) markers, namely E-cadherin and Vimentin, were assessed using immunohistochemistry staining and western blotting. RESULTS: The frequency of NCR- ILC3 in lung was higher in COPD group than controls. The IL-17+RORγt+ cells in lung from COPD mice were more than controls. E-cadherin expression was decreased but Vimentin expression was increased in lung of COPD mice, when compared with controls. The frequency of NCR- ILC3 in lung tissues were positively correlated with mean linear intercept in lung, destructive index in lung and EMT, respectively. CONCLUSIONS: NCR- ILC3 could contribute to emphysema and EMT in lung of cigarette smoking-induced COPD, which will provide further understanding on COPD pathogenesis of immune response.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Interleucina-17/metabolismo , Linfócitos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Vimentina/metabolismo , Imunidade Inata , Fumar Cigarros/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Pulmão/patologia , Caderinas/metabolismo
4.
J Physiol ; 600(19): 4347-4359, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040213

RESUMO

Noradrenaline is a neurotransmitter released in response to homeostatic challenge and activates the hypothalamic-pituitary-adrenal axis via stimulation of corticotropin-releasing hormone (CRH) neurons. Here we investigated the mechanism through which noradrenaline regulates activity within the CRH neuronal network. Using a combination of in vitro GCaMP6f Ca2+ imaging and electrophysiology, we show that noradrenaline induces a robust increase in excitability in a proportion of CRH neurons with many neurons displaying a bursting mode of activity. Noradrenaline-induced activation required α1 -adrenoceptors and L-type voltage-gated Ca2+ channels, but not GABA/glutamate synaptic transmission or sodium action potentials. Exposure of mice to elevated corticosterone levels was able to suppress noradrenaline-induced activation. These results provide further insight into the mechanisms by which noradrenaline regulates CRH neural network activity and hence stress responses. KEY POINTS: GCaMP6f Ca2+ imaging and on-cell patch-clamp recordings reveal that corticotropin-releasing hormone neurons are activated by noradrenaline with many neurons displaying a bursting mode of activity. Noradrenaline-induced activation requires α1 -adrenoceptors. Noradrenaline-induced Ca2+ elevations persist after blocking GABAA , AMPA, NMDA receptors and voltage-gated Na+ channels. Noradrenaline-induced Ca2+ elevations require L-type voltage-gated Ca2+ channels. Corticosterone suppresses noradrenaline-induced excitation.


Assuntos
Hormônio Liberador da Corticotropina , Sistema Hipotálamo-Hipofisário , Animais , Corticosterona/farmacologia , Hormônio Liberador da Corticotropina/metabolismo , Glutamatos , Sistema Hipotálamo-Hipofisário/fisiologia , Camundongos , Neurônios/fisiologia , Norepinefrina/farmacologia , Sistema Hipófise-Suprarrenal/fisiologia , Receptores Adrenérgicos alfa 1 , Receptores de N-Metil-D-Aspartato , Sódio , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 255: 119724, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33784595

RESUMO

Bituminous coal is used widely for a variety of applications despite causing a range of problems within processes. The complexity and heterogeneity of the molecular structure of coal is one of the reasons for problems during use. Investigation into the molecular structure of the bituminous coal is reported from using X-ray diffraction (XRD), Raman spectroscopy, and Fourier Transform infrared (FTIR) spectroscopy experiments on four coal samples from coal mines in Northern China. The average lateral sizes (La), stacking heights (Lc) and interlayer spacing (d002) of the coal samples' crystallite structures derived from the XRD ranged from 25.78 to 27.93 Å, 17.27 to 25.88 Å and 3.40 to 3.52 Å, respectively; and the G-D1, ID1/IG and La of the samples ranged from 245.06 to 249.63 cm-1, 2.18 to 2.48 and 18.16 to 20.64 Å, respectively. The FTIR spectra reveals that coal samples incorporate oxygen-containing functional groups, aliphatic functional groups, aromatic functional groups and hydroxyl functional groups. Results show these four coal samples contained a low degree of ordered microcrystalline units with a low degree of aromatic conformation. The samples have the largest proportion of oxygenated functional groups, followed by aromatic structures, aliphatic structures and hydroxyl groups. Results from this study could inform the ongoing study of molecular structural characteristics of bituminous coal as well as help our understanding of properties such as wettability and pore structure.

6.
Exp Lung Res ; 46(6): 163-173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292085

RESUMO

Objective: Dipeptidyl peptidase 4 (DPP4), also known as CD26, is a transmembrane glycoprotein with peptidase activity expressed on epithelial cells and some immune cells. It also occurs as a soluble form. Studies have revealed that the expression level of lymphocyte sCD26/sDPP4 was elevated in the asthmatic patients. Airway remodeling increases in asthma severity and these structural changes include, amongst others, the loss of epithelial integrity because of cell shedding, goblet cell hyperplasia, destruction of ciliated cells, and EMT. So we try to find whether sCD26/sDPP4 has a role in pathological/dysregulated transition from bronchial epithelial cells into fibroblasts cells in response to TGFß1 exposure in vitro. Therefore, our purpose in the present work was to identify the role of sCD26/sDPP4 in airway EMT regulation. Methods: The EMT cell model was established based on human 16HBE cells. The effects of sCD26/sDPP4 and its inhibitors on airway EMT and that of sCD26/sDPP4 on Th17/IL-17 and its role in airway EMT were investigated in vitro. Results: The mRNA and protein level of E-Cadherin decreased after the treatment of TGF-ß1 in 16HBE cells, while α-SMA was up-regulated. The level of E-Cadherin was significantly down-regulated after the sCD26/sDPP4 stimulation, and that of α-SMA was dramatically elevated. DPP4 inhibitors promoted the level of E-cadherin and inhibited that of α-SMA. Additionally, in the DPP4-treated IL-17 cells group, E-Cadherin was markedly down-regulated at the mRNA and protein level, while α-SMA was reversely up-regulated. Conclusion: The TGF-ß1-induced EMT of human bronchial epithelial cells could be promoted by sCD26/sDPP4. The suppression of EMT in human bronchial epithelial cells was achieved by DPP4 inhibitor, and the TGF-ß1-mediated EMT of human airway cells was promoted by the synergy of IL-17 and sCD26/sDPP4 in vitro.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Asma/tratamento farmacológico , Asma/metabolismo , Brônquios/metabolismo , Caderinas/metabolismo , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/metabolismo , Humanos , Interleucina-17/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...