Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Sci Rep ; 14(1): 14044, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890336

RESUMO

Multiple sclerosis (MS) is a chronic neurological disease frequently associated with significant fatigue, anxiety, depression, and stress. These symptoms are difficult to treat, and prominently contribute to the decreases in quality of life observed with MS. The underlying mechanisms of these "silent" symptoms are not well understood and include not just the psychological responses to a chronic disease, but also biological contributions from bidirectional psycho-neuro-immune (dys)regulation of systemic inflammatory biology. To address these issues, we conducted a prospective, observational pilot study to investigate the psychological, biological, and neuroarchitecture changes associated with a mindfulness-based stress reduction (MBSR) program in MS. The overarching hypothesis was that MBSR modulates systemic and central nervous system inflammation via top-down neurocognitive control over forebrain limbic areas responsible for the neurobiological stress response. 23 patients were enrolled in MBSR and assessed pre/post-program with structural 3 T MRI, behavioral measures, hair cortisol, and blood measures of peripheral inflammation, as indexed by the Conserved Transcriptional Response to Adversity (CTRA) profile. MBSR was associated with improvements across a variety of behavioral outcomes, as well as on-study enlargement of the head of the right hippocampus. The CTRA analyses revealed that greater inflammatory gene expression was related to worse patient-reported anxiety, depression, stress, and loneliness, in addition to lower eudaimonic well-being. Hair cortisol did not significantly change from pre- to post-MBSR. These results support the use of MBSR in MS and elucidate inflammatory mechanisms related to key patient-reported outcomes in this population.


Assuntos
Imageamento por Ressonância Magnética , Atenção Plena , Esclerose Múltipla , Estresse Psicológico , Humanos , Feminino , Atenção Plena/métodos , Projetos Piloto , Masculino , Pessoa de Meia-Idade , Adulto , Esclerose Múltipla/psicologia , Esclerose Múltipla/terapia , Esclerose Múltipla/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Inflamação , Estudos Prospectivos , Hidrocortisona/metabolismo , Hidrocortisona/sangue , Qualidade de Vida
2.
Proc Natl Acad Sci U S A ; 120(51): e2300681120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38100419

RESUMO

Idiopathic normal pressure hydrocephalus (iNPH) is an enigmatic neurological disorder that develops after age 60 and is characterized by gait difficulty, dementia, and incontinence. Recently, we reported that heterozygous CWH43 deletions may cause iNPH. Here, we identify mutations affecting nine additional genes (AK9, RXFP2, PRKD1, HAVCR1, OTOG, MYO7A, NOTCH1, SPG11, and MYH13) that are statistically enriched among iNPH patients. The encoded proteins are all highly expressed in choroid plexus and ependymal cells, and most have been associated with cilia. Damaging mutations in AK9, which encodes an adenylate kinase, were detected in 9.6% of iNPH patients. Mice homozygous for an iNPH-associated AK9 mutation displayed normal cilia structure and number, but decreased cilia motility and beat frequency, communicating hydrocephalus, and balance impairment. AK9+/- mice displayed normal brain development and behavior until early adulthood, but subsequently developed communicating hydrocephalus. Together, our findings suggest that heterozygous mutations that impair ventricular epithelial function may contribute to iNPH.


Assuntos
Hidrocefalia de Pressão Normal , Hidrocefalia , Humanos , Camundongos , Animais , Adulto , Pessoa de Meia-Idade , Hidrocefalia de Pressão Normal/genética , Hidrocefalia de Pressão Normal/complicações , Hidrocefalia/genética , Encéfalo , Plexo Corióideo , Mutação , Proteínas
3.
Cell Mol Neurobiol ; 43(8): 4103-4116, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37620636

RESUMO

Heterozygous mutations affecting FOXJ1, a transcription factor governing multiciliated cell development, have been associated with obstructive hydrocephalus in humans. However, factors that disrupt multiciliated ependymal cell function often cause communicating hydrocephalus, raising questions about whether FOXJ1 mutations cause hydrocephalus primarily by blocking cerebrospinal fluid (CSF) flow or by different mechanisms. Here, we show that heterozygous FOXJ1 mutations are also associated with communicating hydrocephalus in humans and cause communicating hydrocephalus in mice. Disruption of one Foxj1 allele in mice leads to incomplete ependymal cell differentiation and communicating hydrocephalus. Mature ependymal cell number and motile cilia number are decreased, and 12% of motile cilia display abnormal axonemes. We observed decreased microtubule attachment to basal bodies, random localization and orientation of basal body patches, loss of planar cell polarity, and a disruption of unidirectional CSF flow. Thus, heterozygous FOXJ1 mutations impair ventricular multiciliated cell differentiation, thereby causing communicating hydrocephalus. CSF flow obstruction may develop secondarily in some patients harboring FOXJ1 mutations. Heterozygous FOXJ1 mutations impair motile cilia structure and basal body alignment, thereby disrupting CSF flow dynamics and causing communicating hydrocephalus.


Assuntos
Hidrocefalia , Camundongos , Humanos , Animais , Hidrocefalia/genética , Epêndima/metabolismo , Regulação da Expressão Gênica , Mutação/genética , Diferenciação Celular , Cílios/genética , Cílios/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
4.
Mol Ther Methods Clin Dev ; 23: 128-134, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34703836

RESUMO

Transformative results of adeno-associated virus (AAV) gene therapy in patients with spinal muscular atrophy and Leber's congenital amaurosis led to approval of the first two AAV products in the United States to treat these diseases. These extraordinary results led to a dramatic increase in the number and type of AAV gene-therapy programs. However, the field lacks non-invasive means to assess levels and duration of therapeutic protein function in patients. Here, we describe a new magnetic resonance imaging (MRI) technology for real-time reporting of gene-therapy products in the living animal in the form of an MRI probe that is activated in the presence of therapeutic protein expression. For the first time, we show reliable tracking of enzyme expression after a now in-human clinical trial AAV gene therapy (ClinicalTrials.gov: NTC03952637) encoding lysosomal acid beta-galactosidase (ßgal) using a self-immolative ßgal-responsive MRI probe. MRI enhancement in AAV-treated enzyme-deficient mice (GLB-1-/-) correlates with ßgal activity in central nervous system and peripheral organs after intracranial or intravenous AAV gene therapy, respectively. With >1,800 gene therapies in phase I/II clinical trials (ClinicalTrials.gov), development of a non-invasive method to track gene expression over time in patients is crucial to the future of the gene-therapy field.

5.
Radiol Imaging Cancer ; 3(4): e200069, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34170199

RESUMO

Purpose To develop multimodality imaging techniques for measuring epidermal growth factor receptor (EGFR) as a therapy-relevant and metastasis-associated molecular marker in triple-negative mammary adenocarcinoma metastases. Materials and Methods An orthotopic bone metastasis EGFR-positive, triple-negative breast cancer (TNBC) model in rats was used for bioluminescence imaging, SPECT/CT, PET/CT, and MRI with quantitative analysis of transcripts (n = 22 rats). Receptor-specific MRI of EGFR expression in vivo was performed by acquiring spin-echo T1-weighted images after sequential administration of a pair of anti-EGFR antigen binding fragments, F(ab')2, conjugated to either horseradish peroxidase or glucose oxidase, which have complementing activities, as well as paramagnetic (gadolinium[III]-mono-5-hydroxytryptamide of 2,2',2''-(10-(2,6-dioxotetrahydro-2H-pyran-3-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid, or Gd-5HT-DOTAGA) or positron-emitting (gallium 68-5HT-DOTAGA) substrates for MRI and PET/CT imaging, respectively. EGFR expression was confirmed by quantitative reverse transcriptase polymerase chain reaction and immunohistochemical analyses to compare with image findings. Results After surgical intraarterial delivery of TNBC cells, rats developed tumors that diverged into either rapidly growing osteolytic or slow-growing nonosteolytic tumors. Both tumor types showed receptor-specific initial MRI signal enhancement (contrast-to-noise ratio) that was three to six times higher than that of normal bone marrow (29.4 vs 4.9; P < .01). Micro PET/CT imaging of EGFR expression demonstrated a high level of heterogeneity with regional uptake of the tracer, which corresponded to region-of-interest MRI signal intensity elevation (121.1 vs 93.3; P < .001). Analysis of metastases with corroboration of imaging results showed high levels of EGFR protein and messenger RNA, or mRNA, expression in the invasive tumor. Conclusion Convergence of multimodal molecular receptor imaging enabled comprehensive assessment of EGFR overexpression in an orthotopic model of TNBC metastasis. Keywords: Animal Studies, Molecular Imaging-Cancer, MR-Contrast Agent, Radionuclide Studies, Skeletal-Appendicular, Metastases Supplemental material is available for this article. © RSNA, 2021.


Assuntos
Neoplasias Ósseas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Neoplasias Ósseas/diagnóstico por imagem , Receptores ErbB/genética , Fragmentos Fab das Imunoglobulinas , Tomografia por Emissão de Pósitrons , Ratos
6.
EMBO Mol Med ; 13(3): e13249, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33459505

RESUMO

Idiopathic normal pressure hydrocephalus (iNPH) is a neurological disorder that occurs in about 1% of individuals over age 60 and is characterized by enlarged cerebral ventricles, gait difficulty, incontinence, and cognitive decline. The cause and pathophysiology of iNPH are largely unknown. We performed whole exome sequencing of DNA obtained from 53 unrelated iNPH patients. Two recurrent heterozygous loss of function deletions in CWH43 were observed in 15% of iNPH patients and were significantly enriched 6.6-fold and 2.7-fold, respectively, when compared to the general population. Cwh43 modifies the lipid anchor of glycosylphosphatidylinositol-anchored proteins. Mice heterozygous for CWH43 deletion appeared grossly normal but displayed hydrocephalus, gait and balance abnormalities, decreased numbers of ependymal cilia, and decreased localization of glycosylphosphatidylinositol-anchored proteins to the apical surfaces of choroid plexus and ependymal cells. Our findings provide novel mechanistic insights into the origins of iNPH and demonstrate that it represents a distinct disease entity.


Assuntos
Hidrocefalia de Pressão Normal , Animais , Humanos , Hidrocefalia de Pressão Normal/genética , Camundongos
7.
Int J Numer Method Biomed Eng ; 36(12): e3406, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070467

RESUMO

Uvula-induced snoring and associated obstructive sleep apnea is a complex phenomenon characterized by vibrating structures and highly transient vortex dynamics. This study aimed to extract signature features of uvula wake flows of different pathological origins and develop a linear reduced-order surrogate model for flow control. Six airway models were developed with two uvula kinematics and three pharynx constriction levels. A direct numerical simulation (DNS) flow solver based on the immersed boundary method was utilized to resolve the wake flows induced by the flapping uvula. Key spatial and temporal responses of the flow to uvula kinematics and pharynx constriction were investigated using continuous wavelet transform (CWT), proper orthogonal decomposition (POD), and dynamic mode decomposition (DMD). Results showed highly complex patterns in flow topologies. CWT analysis revealed multiscale correlations in both time and space between the flapping uvular and wake flows. POD analysis successfully separated the flows among the six models by projecting the datasets in the vector space spanned by the first three eigenmodes. Perceivable differences were also captured in the time evolution of the DMD modes among the six models. A linear reduced-order surrogate model was constructed from the predominant eigenmodes obtained from the DMD analysis and predicted vortex patterns from this surrogate model agreed well with the corresponding DNS simulations. The computational and analytical platform presented in this study could bring a variety of applications in breathing-related disorders and beyond. The computational efficiency of surrogate modeling makes it well suited for flow control, forecasting, and uncertainty analyses.


Assuntos
Apneia Obstrutiva do Sono , Úvula , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Ronco
8.
Comput Biol Med ; 121: 103791, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32568674

RESUMO

Significant differences in alveolar size exist in humans of different ages, gender, health, and among different species. The effects of alveolar sizes, as well as the accompanying breathing frequencies, on regional and local dosimetry of inhaled nanoparticles have not been sufficiently studied. Despite a well-accepted qualitative understanding of the advection-diffusion-sedimentation mechanism in the acinar region, a quantitative picture of the interactions among these factors remains inchoate. The objective of this study is to quantify the effects of alveolar size on the regional and local deposition of inhaled nanoparticles in alveolar models of varying complexities and to understand the dynamic interactions among different deposition mechanisms. Three different models were considered that retained 1, 4, and 45 alveoli, respectively. For each model, the baseline geometry was scaled by », ½, 2, 4, and 8 times by volume. Temporal evolution and spatial distribution of particle deposition were tracked using a discrete-phase Lagrangian model. Lower retentions of inhaled nanoparticles were observed in the larger alveoli under the same respiration frequency, while similar retentions were found among different geometrical scales if breathing frequencies allometrically matched the alveolar size. Dimensional analysis reveals a manifold deposition mechanism with tantamount contributions from advection, diffusion, and gravitational sedimentation, each of which can become dominant depending on the location in the alveoli. Results of this study indicate that empirical correlations obtained from one sub-population cannot be directly applied to others, nor can they be simply scaled as a function of the alveolar size or respiration frequency due to the regime-transiting deposition mechanism that is both localized and dynamic.


Assuntos
Modelos Biológicos , Nanopartículas , Aerossóis , Humanos , Pulmão , Tamanho da Partícula , Alvéolos Pulmonares , Respiração
9.
Phys Rev E ; 101(1-1): 012128, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069550

RESUMO

The effect of boundary relaxation on pulsed field gradient (PFG) anomalous restricted diffusion is investigated in this paper. The PFG signal attenuation expressions of anomalous diffusion in plate, sphere, and cylinder are derived based on fractional calculus. In addition, approximate expressions for boundary relaxation induced short time signal attenuation under zero gradient field and boundary relaxation affected short time apparent diffusion coefficients are given in this paper. Unlike the exponential signal attenuation in normal diffusion, the PFG signal attenuation in anomalous diffusion with boundary relaxation is either a Mittag-Leffler-function-based attenuation or a stretched-exponential-function-based attenuation. The stretched exponential attenuations of all three structures clearly show the diffractive pattern. In contrast, only in the plate structure does the Mittag-Leffler-function-based attenuation display an obvious diffractive pattern. Additionally, anomalous diffusion with smaller time derivative order α has a weaker diffractive pattern and less signal attenuation. Moreover, the results demonstrate that boundary relaxation induced signal attenuation is significantly affected by the anomalous diffusion when no gradient field is applied. Meanwhile, the boundary relaxation significantly affects PFG signal attenuation of anomalous diffusion in the following ways: The boundary relaxation results in reduced radius from the minimum of the diffractive patterns, and it results in an increased apparent diffusion coefficient and decreased surfaces to volume ratio in varying the diffusion time experiment; the boundary relaxation also substantially affects the apparent diffusion coefficient of sphere structure in the variation of gradient experiment.

10.
Biomacromolecules ; 20(2): 790-800, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30563327

RESUMO

Using fluorinated probes for 19F MRI imaging is an emerging field with potential utility in cellular imaging and cell tracking in vivo, which complements conventional 1H MRI. An attractive feature of 19F-based imaging is that this is a bio-orthogonal nucleus and the naturally abundant isotope is NMR active. A significant hurdle however in the 19F MRI arises from the tendency of organic macromolecules, with multiple fluorocarbon substitutions, to aggregate in the aqueous phase. This aggregation results in significant loss of sensitivity, because the T2 relaxation times of these aggregated 19F species tend to be significantly lower. In this report, we have developed a strategy to covalently trap nanoscopic states with an optimal degree of 19F substitutions, followed by significant enhancement in T2 relaxation times through increased segmental mobility of the side chain substituents facilitated by the stimulus-responsive elements in the polymeric nanogel. In addition to NMR relaxation time based evaluations, the ability to obtain such signals are also evaluated in mouse models. The propensity of these nanoscale assemblies to encapsulate hydrophobic drug molecules and the availability of surfaces for convenient introduction of fluorescent labels suggest the potential of these nanoscale architectures for use in multimodal imaging and therapeutic applications.


Assuntos
Flúor/química , Imageamento por Ressonância Magnética/métodos , Nanogéis/química , Células HeLa , Humanos
11.
J Neurointerv Surg ; 10(2): 143-149, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28280114

RESUMO

BACKGROUND AND PURPOSE: Currently, there is neither a standard protocol for vessel wall MR imaging of intracranial atherosclerotic disease (ICAD) nor a gold standard phantom to compare MR sequences. In this study, a plaque phantom is developed and characterized that provides a platform for establishing a uniform imaging approach for ICAD. MATERIALS AND METHODS: A patient specific injection mold was 3D printed to construct a geometrically accurate ICAD phantom. Polyvinyl alcohol hydrogel was infused into the core shell mold to form the stenotic artery. The ICAD phantom incorporated materials mimicking a stenotic vessel and plaque components, including fibrous cap and lipid core. Two phantoms were scanned using high resolution cone beam CT and compared with four different 3 T MRI systems across eight different sites over a period of 18 months. Inter-phantom variability was assessed by lumen dimensions and contrast to noise ratio (CNR). RESULTS: Quantitative evaluation of the minimum lumen radius in the stenosis showed that the radius was on average 0.80 mm (95% CI 0.77 to 0.82 mm) in model 1 and 0.77 mm (95% CI 0.74 to 0.81 mm) in model 2. The highest CNRs were observed for comparisons between lipid and vessel wall. To evaluate manufacturing reproducibility, the CNR variability between the two models had an average absolute difference of 4.31 (95% CI 3.82 to 5.78). Variation in CNR between the images from the same scanner separated by 7 months was 2.5-6.2, showing reproducible phantom durability. CONCLUSIONS: A plaque phantom composed of a stenotic vessel wall and plaque components was successfully constructed for multicenter high resolution MRI standardization.


Assuntos
Imageamento Tridimensional/instrumentação , Arteriosclerose Intracraniana/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Insuficiência Vertebrobasilar/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/instrumentação , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
12.
Theranostics ; 7(13): 3354-3368, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900515

RESUMO

Short oligonucleotide sequences are now being widely investigated for their potential therapeutic properties. The modification of oligonucleotide termini with short fluorinated residues is capable of drastically altering their behavior in complex in vitro and in vivo systems, and thus may serve to greatly enhance their therapeutic potential. The main goals of our work were to explore: 1) how modification of STAT3 transcription factor-binding oligodeoxynucleotide (ODN) duplexes (ODND) with one or two short fluorocarbon (FC)-based residues would change their properties in vitro and in vivo, and if so, how this would affect their intracellular uptake by cancer cells, and 2) the ability of such modified ODND to form non-covalent complexes with FC-modified carrier macromolecule. The latter has an inherent advantage of producing a 19F-specific magnetic resonance (MR) imaging signature. Thus, we also tested the ability of such copolymers to generate 19F-MR signals. Materials and Methods. Fluorinated nucleic acid residues were incorporated into ODN by using automated synthesis or via activated esters on ODN 5'-ends. To quantify ODND uptake by the cells and to track their stability, we covalently labeled ODN with fluorophores using internucleoside linker technology; the FC-modified carrier was synthesized by acylation of pegylated polylysine graft copolymer with perfluoroundecanoic acid (M5-gPLL-PFUDA). Results. ODN with a single FC group exhibited a tendency to form duplexes with higher melting points and with increased stability against degradation when compared to control non-modified ODNs. ODND carrying fluorinated residues showed complex formation with M5-gPLL-PFUDA as predicted by molecular dynamics simulations. Moreover, FC groups modulated the specificity of ODND binding to the STAT3 target. Finally, FC modification resulted in greater cell uptake (2 to 4 fold higher) when compared to the uptake of non-modified ODND as determined by quantitative confocal fluorescence imaging of A431 and INS-1 cells. Conclusion. ODND modification with FC residues enables fine-tuning of protein binding specificity to double-strand binding motifs and results in an increased internalization by A431 and INS-1 cells in culture. Our results show that modification of ODN termini with FC residues is both a feasible and powerful strategy for developing more efficient nucleic acid-based therapies with the added benefit of allowing for non-invasive MR imaging of ODND therapeutic targeting and response.


Assuntos
Fluorocarbonos/química , Espaço Intracelular/metabolismo , Imagem Molecular , Oligodesoxirribonucleotídeos/química , Fator de Transcrição STAT3/metabolismo , Carbocianinas/química , Linhagem Celular Tumoral , Ensaio de Desvio de Mobilidade Eletroforética , Ácidos Graxos/química , Humanos , Simulação de Dinâmica Molecular , Sondas Moleculares/química , Oligodesoxirribonucleotídeos/síntese química , Polilisina/química , Espectroscopia de Prótons por Ressonância Magnética
13.
Nano Lett ; 17(7): 4096-4100, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28581764

RESUMO

Biocompatibility, targeting, and clearance are key challenges in the design of new MRI contrast agents. Herein, we report on a tumor-targeting, gadolinium biomineralized human transferrin (Tf) protein-based nanoparticle (Gd@Tf NP) for MRI use. As compared to the conventionally used gadolinium chelates, the resultant Gd@Tf NPs possess outstanding chemical stability and exhibited superior longitudinal relaxation. More importantly, our MR images show that Gd@Tf indeed retained the natural tumor targeting ability and the subsequent tumor retrieval biofunctions of Tf. Thus, such Tf protein-based MR NPs integrate T1 signal amplification, precise tumor targeting, and systematic clearance capabilities. They offer a new approach to design biocompatible multifunctional MRI contrast agents for a wide range of clinical imaging and treatment applications.


Assuntos
Meios de Contraste/química , Complexos de Coordenação/química , Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Transferrina/química , Animais , Linhagem Celular Tumoral , Quelantes/química , Meios de Contraste/toxicidade , Humanos , Cinética , Camundongos , Tamanho da Partícula , Propriedades de Superfície , Distribuição Tecidual
14.
J Magn Reson ; 272: 25-36, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27616657

RESUMO

Pulsed field gradient (PFG) NMR is a noninvasive tool to study anomalous diffusion, which exists widely in many systems such as in polymer or biological systems, in porous material, in single file structures and in fractal geometries. In a real system, the diffusion could be a restricted or a tortuous anomalous diffusion, rather than a free diffusion as the domains for fast and slow transport could coexist. Though there are signal attenuation expressions for free anomalous diffusion in literature, the signal attenuation formalisms for restricted anomalous diffusion is very limited, except for a restricted time-fractional diffusion within a plate reported recently. To better understand the PFG restricted fractional diffusion, in this paper, the PFG signal attenuation expressions were derived for three typical structures (plate, sphere, and cylinder) based on two models: fractal derivative model and fractional derivative model. These signal attenuation expressions include two parts, the time part Tn(t) and the space part Xn(r). Unlike normal diffusion, the time part Tn(t) in time-fractional diffusion can be either a Mittag-Leffler function from the fractional derivative model or a stretched exponential function from the fractal derivative model. However, provided the restricted normal diffusion and the restricted time-fractional diffusion are in an identical structure, they will have the same space part Xn(r) as both diffusions have the same space derivative parameter ß equaling 2, therefore, they should have similar diffractive patterns. The restricted general fractional diffusion within a plate is also investigated, which indicates that at a long time limit, the diffusion type is insignificant to the diffractive pattern that depends only on the structure and the gradient pulses. The expressions describing the time-dependent behaviors of apparent diffusion coefficient Df,app for restricted anomalous diffusion are also proposed in this paper. Both the short and long time-dependent behaviors of Df,app are distinct from that of normal diffusion. The general expressions for PFG restricted curvilinear diffusion of tube model were derived in a conventional way and its result agree with that obtained from the fractional derivative model with α equaling 1/2. Additionally, continuous-time random walk simulation was performed to give good support to the theoretical results. These theoretical results reported here will be valuable for researchers in analyzing PFG anomalous diffusion.

15.
Bioconjug Chem ; 27(2): 383-90, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26603129

RESUMO

Magnetic resonance (MR) and photoacoustic (PA) imaging are currently being investigated as complementing strategies for applications requiring sensitive detection of cells in vivo. While combined MR/PAI detection of cells requires biocompatible cell labeling probes, water-based synthesis of dual-modality MR/PAI probes presents significant technical challenges. Here we describe facile synthesis and characterization of hybrid modular dextran-stabilized gold/iron oxide (Au-IO) multimetallic nanoparticles (NP) enabling multimodal imaging of cells. The stable association between the IO and gold NP was achieved by priming the surface of dextran-coated IO with silver NP resulting from silver(I) reduction by aldehyde groups, which are naturally present within the dextran coating of IO at the level of 19-23 groups/particle. The Au-IO NP formed in the presence of silver-primed Au-IO were stabilized by using partially thiolated MPEG5-gPLL graft copolymer carrying residual amino groups. This stabilizer served as a carrier of near-infrared fluorophores (e.g., IRDye 800RS) for multispectral PA imaging. Dual modality imaging experiments performed in capillary phantoms of purified Au-IO-800RS NPs showed that these NPs were detectible using 3T MRI at a concentration of 25 µM iron. PA imaging achieved approximately 2.5-times higher detection sensitivity due to strong PA signal emissions at 530 and 770 nm, corresponding to gold plasmons and IRDye integrated into the coating of the hybrid NPs, respectively, with no "bleaching" of PA signal. MDA-MB-231 cells prelabeled with Au-IO-800RS retained plasma membrane integrity and were detectable by using both MR and dual-wavelength PA at 49 ± 3 cells/imaging voxel. We believe that modular assembly of multimetallic NPs shows promise for imaging analysis of engineered cells and tissues with high resolution and sensitivity.


Assuntos
Meios de Contraste/química , Dextranos/química , Compostos Férricos/química , Ouro/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Técnicas Fotoacústicas/métodos , Linhagem Celular Tumoral , Meios de Contraste/farmacocinética , Dextranos/farmacocinética , Compostos Férricos/farmacocinética , Ouro/farmacocinética , Humanos , Nanopartículas Metálicas , Imagem Multimodal/métodos
16.
PLoS One ; 10(11): e0143453, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26569115

RESUMO

Cardiovascular disease is the leading cause of death in Western cultures. The vast majority of cardiovascular events, including stroke and myocardial infarction, result from the rupture of vulnerable atherosclerotic plaques, which are characterized by high and active macrophage content. Current imaging modalities including magnetic resonance imaging (MRI) aim to characterize anatomic and structural features of plaques rather than their content. Previously, we reported that macrophage-targeted delivery of gadolinium (Gd)-based contrast agent (GBCA-HDL) using high density lipoproteins (HDL)-like particles significantly enhances the detection of plaques in an apolipoprotein (apo) E knockout (KO) mouse model, with an atherosclerotic wall/muscle normalized enhancement ratio (NER) of 120% achieved. These particles are comprised of lipids and synthetic peptide fragments of the major protein of HDL, apo A-I, that contain a naturally occurring modification which targets the particles to macrophages. Targeted delivery minimizes the Gd dose and thus reduces the adverse effects of Gd. The aims of the current study were to test whether varying the GBCA-HDL particle shape and composition can further enhance atherosclerotic plaque MRI and control organ clearance of these agents. We show that the optimized GBCA-HDL particles are efficiently delivered intracellularly to and uptaken by both J774 macrophages in vitro and more importantly, by intraplaque macrophages in vivo, as evidenced by NER up to 160% and higher. This suggests high diagnostic power of our GBCA-HDL particles in the detection of vulnerable atherosclerotic plaques. Further, in contrast to discoidal, spherical GBCA-HDL exhibit hepatic clearance, which could further diminish adverse renal effects of Gd. Finally, activated macrophages are reliable indicators of any inflamed tissues and are implicated in other areas of unmet clinical need such as rheumatoid arthritis, sepsis and cancer, suggesting the expanded diagnostic and prognostic use of this method.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/diagnóstico , Gadolínio/farmacologia , Lipopeptídeos/metabolismo , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Nanopartículas/química , Animais , Aorta/patologia , Apolipoproteínas E/metabolismo , Aterosclerose/patologia , Linhagem Celular , Meios de Contraste , Citoplasma/metabolismo , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Fluorescência , Lipoproteínas HDL/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Knockout , Microscopia Confocal , Placa Aterosclerótica/patologia
17.
Surgery ; 156(5): 1225-31, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25262218

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) of the liver is a well-known cause of morbidity and mortality after liver transplantation. Effective treatment strategies aimed at decreasing hepatic IRI injury and accelerating liver regeneration could offer major benefits in liver transplantation, especially in the case of partial allografts. Human adipose-derived mesenchymal stem cells (HADMSCs) are an attractive source for regenerative medicine because of their anti-inflammatory and regenerative properties. We hypothesized that HADMSCs attenuate IRI and promote liver regeneration. METHODS: Mice were subjected to 60 minutes of partial IRI with or without 70% partial hepatectomy. Animals were treated with HADMSCs. Liver IRI was evaluated with serum levels of alanine aminotransferase, serum interleukin-6, and histopathology. Liver samples were stained for specific markers of liver regeneration. RESULTS: Histology, serum interleukin-6, and alanine aminotransferase release revealed that treatment with HADMSCs attenuated liver injury compared with control patients. Improved animal survival and increased number of regenerating cells were observed in HADMSC-treated animals who underwent IRI and partial hepatectomy compared with the control group. CONCLUSION: HADMSC represents a potential therapeutic strategy to decrease IRI and promote regeneration in liver transplantation.


Assuntos
Regeneração Hepática , Transplante de Células-Tronco Mesenquimais , Traumatismo por Reperfusão/terapia , Tecido Adiposo/citologia , Animais , Células Cultivadas , Humanos , Fígado/irrigação sanguínea , Camundongos Endogâmicos C57BL
18.
Acad Radiol ; 21(12): 1524-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25172411

RESUMO

RATIONALE AND OBJECTIVES: Hyperpolarized (HP) gas magnetic resonance imaging (MRI) is an advanced imaging technique that provides high-resolution regional information on lung function without using ionizing radiation. Before this modality can be considered for assessing clinical or investigational interventions, baseline repeatability needs to be established. We assessed repeatability of lung function measurement using HP helium-3 MRI (HP (3)He MRI) in a small cohort of patients with cystic fibrosis (CF). MATERIALS AND METHODS: We examined repeatability of HP (3)He MR images of five patients with CF in four scanning sessions over a 4-week period. We acquired images on a Philips 3.0 Tesla Achieva MRI scanner using a quadrature, flexible, wrap-around, (3)He radiofrequency coil with a fast gradient-echo pulse sequence. We determined ventilation volume and ventilation defect volume using an advanced semiautomatic segmentation algorithm and also quantified ventilation heterogeneity. RESULTS: There were no significant differences in total ventilation volume, ventilation defect volume, ventilation defect percentage, or mean ventilation heterogeneity (repeated-measures analysis of variance, P = .2116, P = .2825, P = .2871, and P = .7265, respectively) in the patients across the four scanning sessions. CONCLUSIONS: Our results indicate that total ventilation volume, ventilation defect volume, ventilation defect percentage, and mean ventilation heterogeneity as assessed by HP gas MRI in CF patients with stable health are reproducible over time. This repeatability and the technique's capability to provide noninvasive high-resolution data on regional lung function without ionizing radiation make (3)He MRI a potentially useful outcome measure for CF-related clinical trials.


Assuntos
Fibrose Cística/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Algoritmos , Hélio , Humanos , Isótopos , Ventilação Pulmonar , Reprodutibilidade dos Testes , Testes de Função Respiratória
19.
Brain Behav ; 4(3): 408-17, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24944870

RESUMO

INTRODUCTION: Perturbations in neural function provoked by a drug are thought to induce neural adaptations, which, in the absence of the drug, give rise to withdrawal symptoms. Previously published structural data from this study indicated that the progressive development of physical dependence is associated with increasing density of white matter tracts between the anterior cingulum bundle and the precuneus. METHODS: Using functional magnetic resonance imaging, we compared 11 smokers after 11 h of abstinence from nicotine and after satiation, with 10 nonsmoking controls, using independent component analysis for brain network comparisons as well as a whole brain resting-state functional connectivity analysis using the anterior cingulate cortex as a seed. RESULTS: Independent component analysis demonstrated increased functional connectivity in brain networks such as the default mode network associated with the withdrawal state in multiple brain regions. In seed-based analysis, smokers in the withdrawal state showed stronger functional connectivity than nonsmoking controls between the anterior cingulate cortex and the precuneus, caudate, putamen, and frontal cortex (P < 0.05). Among smokers, compared to the satiated state, nicotine withdrawal was associated with increased connectivity between the anterior cingulate cortex and the precuneus, insula, orbital frontal gyrus, superior frontal gyrus, posterior cingulate cortex, superior temporal, and inferior temporal lobe (P < 0.02). The intensity of withdrawal-induced craving correlated with the strength of connectivity between the anterior cingulate cortex and the precuneus, insula, caudate, putamen, middle cingulate gyrus, and precentral gyrus (r = 0.60-0.76; P < 0.05). CONCLUSIONS: In concordance with our previous report that structural neural connectivity between the anterior cingulate area and the precuneus increased in proportion to the progression of physical dependence, resting-state functional connectivity in this pathway increases during nicotine withdrawal in correlation with the intensity of withdrawal-induced craving. These findings suggest that smoking triggers structural and functional neural adaptations in the brain that support withdrawal-induced craving.


Assuntos
Giro do Cíngulo/fisiopatologia , Lobo Parietal/fisiopatologia , Tabagismo/fisiopatologia , Adolescente , Adulto , Feminino , Giro do Cíngulo/patologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Lobo Parietal/patologia , Tabagismo/patologia , Adulto Jovem
20.
IEEE Trans Nucl Sci ; 61(1): 192-201, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24817767

RESUMO

Respiratory motion of the heart impacts the diagnostic accuracy of myocardial-perfusion emission-imaging studies. Amplitude binning has come to be the method of choice for binning list-mode based acquisitions for correction of respiratory motion in PET and SPECT. In some subjects respiratory motion exhibits hysteretic behavior similar to damped non-linear cyclic systems. The detection and correction of hysteresis between the signals from surface movement of the patient's body used in binning and the motion of the heart within the chest remains an open area for investigation. This study reports our investigation in nine volunteers of the combined MRI tracking of the internal respiratory motion of the heart using Navigators with stereo-tracking of markers on the volunteer's chest and abdomen by a visual-tracking system (VTS). The respiratory motion signals from the internal organs and the external markers were evaluated for hysteretic behavior analyzing the temporal correspondence of the signals. In general, a strong, positive correlation between the external marker motion (AP direction) and the internal heart motion (SI direction) during respiration was observed. The average ± standard deviation in the Spearman's ranked correlation coefficient (ρ) over the nine volunteer studied was 0.92 ± 0.1 between the external abdomen marker and the internal heart, and 0.87 ± 0.2 between the external chest marker and the internal heart. However despite the good correlation on average for the nine volunteers, in three studies a poor correlation was observed due to hysteretic behavior between inspiration and expiration for either the chest marker and the internal motion of the heart, or the abdominal marker and the motion of the heart. In all cases we observed a good correlation of at least either the abdomen or the chest with the heart. Based on this result, we propose the use of marker motion from both the chest and abdomen regions when estimating the internal heart motion to detect and address hysteresis when binning list-mode emission data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...