Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(5): 2679-2692, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38375746

RESUMO

High-fat diet (HFD)-induced dyslipidemia is frequently accompanied by gut microbiota dysbiosis and a compromised gut barrier. Enhancing the intestinal barrier function emerges as a potential therapeutic approach for dyslipidemia. The ILC3-IL22-IL22R pathway, which responds to dietary and microbial signals, has not only attracted attention for its crucial role in maintaining the intestinal barrier, but recent reports have also suggested its potential in regulating lipid metabolism. Limonin is derived from the Chinese herb Evodiae fructus, which has shown potential in ameliorating dysbiosis of serum lipids. However, its underlying mechanisms remain elusive. Consequently, targeting the ILC3-IL22-IL22R pathway to enhance intestinal barrier function holds promise as a therapeutic approach for dyslipidemia. In this study, male C57BL/6 mice were subjected to a 16-week HFD to induce dyslipidemia and concurrently administered oral limonin. We discovered that limonin supplementation dramatically reduced serum lipid profiles in HFD-fed mice, significantly curbing HFD-induced weight gain and epididymal fat accumulation. Ileal histopathological evaluation indicated limonin's ameliorative effects on HFD-induced intestinal barrier impairment. Limonin also moderated the intestinal microbiota dysbiosis, which is characterized by the elevation of Firmicutes in HFD mice, and notably amplified the abundance of probiotic Lactobacillus. In addition, supported by flow cytometry and other analyses, we observed that limonin upregulated the ILC3-IL22-IL22R pathway, enhancing phosphorylated STAT3 (pSTAT3) in intestinal epithelial cells (IECs), thereby reducing lipid transporter expression. In conclusion, our study revealed that limonin exerted a promising preventive effect against HFD-induced dyslipidemia by the mitigation of the intestinal barrier function and intestinal microbiota, and its mechanism was related to the upregulation of the ILC3-IL22-IL22R pathway.


Assuntos
Dislipidemias , Microbioma Gastrointestinal , Limoninas , Masculino , Animais , Camundongos , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Disbiose/tratamento farmacológico , Disbiose/metabolismo , Limoninas/farmacologia , Camundongos Endogâmicos C57BL , Lipídeos , Dislipidemias/tratamento farmacológico , Dislipidemias/etiologia
2.
Front Pharmacol ; 14: 1082451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762105

RESUMO

Background: With the gradual increase in prevalence in recent years, non-alcoholic steatohepatitis (NASH) has become one of the significant health problems that urgently needs to be addressed worldwide. GanShuang Granules (GSG) is derived from the classical Chinese formula Xiaoyao San and mainly used in the clinical treatment of chronic liver diseases. Objective: In this study, we aim to gain a deeper insight into the inhibiting effects of GSG on non-alcoholic fatty liver disease (NAFLD) rats and preliminarily elucidate the underlying intervention mechanisms. Methods: First, High performance liquid chromatography (UHPLC-Q/Orbitrap-MS/MS) was used for the active compounds prediction in GSG. Then the data was mapped to mzCloud database. The targets corresponding to GSG compounds were collected from public databases, along with disease genes for NAFLD. The core targets and molecular mechanisms of GSG for NAFLD treatment were predicted by protein-protein interaction (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Molecular docking of the core target-component interactions was simulated using AutoDock Vina software. The effect of GSG on NASH rats was evaluated by pathological staining and analysis of various index results. Finally, the candidate targets were further validated by ELISA and western blot (WB) analyses. Results: Combining UHPLC-Q/Orbitrap-MS/MS data analysis and public database data, a total of 346 cross-targets were obtained, corresponding to 81 compounds. The subnetwork with an MCODE score of 53.623 is a potential core target group for this study. GO and KEGG enrichment analyses showed that the targets of GSG in NAFLD were mostly related to oxidative stress, the NF-κB signaling pathway, and the apoptosis signaling pathway. By integrating the results of network pharmacology analysis, the core objectives of this study mainly include AKT1, CASP9, TNF, and CASP8. The core ingredients are related to resveratrol and fisetin. The molecular docking results indicated key binding activity between AKT1-fisetin, AKT1-Resveratrol, and CASP8-fisetin. Moreover, GSG could improve the inflammatory status and restore the abnormal lipid accumulation of NAFLD/NASH liver, and these levels are further verified by pathological staining and detection of related indicators. Mechanistically, GSG could regulate protein expression levels in the liver for P65, p-P65, IKB, p-IKB, IKK, caspase-3, -8, -9, and cytochrome C, etc. It reflects the inhibitory effect of GSG on the NF-κB/IκB signaling pathway. Conclusion: Our results suggested that GSG demonstrated therapeutic effects on NAFLD/NASH rats, and these may be mainly reflected in the inhibitory effects on the NF-κB/IκB signaling pathway and its downstream inflammation and apoptosis signals.

3.
Diabetes Metab Syndr Obes ; 15: 2427-2442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35971521

RESUMO

Background: The increasing incidence of obesity and its complications has become a global public health problem. Lingguizhugan decoction (LGZGD) is a representative compound of traditional Chinese medicine (TCM) for metabolic diseases, such as nonalcoholic fatty liver disease, but its role in insulin resistance (IR) treatment is still less known. This study aims to evaluate the therapeutic properties of LGZGD on obesity-induced IR and explore the potential mechanism of LGZGD on gut microbiota and its metabolites in the treatment of IR. Methods: In this study, we induced an IR model in the form of high-fat diet (HFD) rats gavaged with LGZGD (1.64 g/kg BW) for three weeks. The IR status was measured by biochemical assays and oral glucose tolerance tests. The degrees of damage to liver function and the intestinal barrier were observed by hematoxylin and eosin (H&E) staining and immunohistochemistry. Alterations in intestinal microbiota and metabolites were assessed by 16S rRNA and an untargeted metabolomics platform. Results: Our results showed that after LGZGD treatment, the body weight, plasma insulin concentration and blood lipids were significantly decreased, and glucose tolerance and hepatic steatosis were ameliorated. In addition, small intestinal villi were restored, and the expression of Occludin was upregulated. The relative abundance of Akkermansia, Faecalibacterium and Phascolarctobacterium in the HFD-LGZG group was upregulated. Obesity-related metabolic pathways, such as bile secretion, biosynthesis of amino acids, phenylalanine metabolism, serotonergic synapse, protein digestion and absorption, taurine and hypotaurine metabolism, and primary bile acid biosynthesis, were changed. After LGZGD intervention, metabolites developed toward the healthy control group. In addition, the expression of bile acid metabolism related genes was also regulated in IR rats. Conclusion: We showed that LGZGD relieved IR, possibly by regulating the composition of the fecal microbiota and its metabolites. The above studies provide a basis for further study of LGZGD in the treatment of IR and its clinical application.

4.
Heliyon ; 6(12): e05834, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33426337

RESUMO

The effect of structural alteration of potato tissues by using divalent ions on oil uptake, texture, and color of deep-fat fried potato chips. The structure modification was achieved by sonication-assisted vacuum impregnation (SVI), with varying sonication times and soaking concentrations of MgCl2. SVI pretreated (sonicated by 50 min in a 15K magnesium solution) potato chips had 20% and 41% less oil content than the NSVI and control samples, respectively; and absorbed 29% more magnesium than the NSVI samples. The SVI pretreatment significantly affected product texture, color, shrinkage, and porosity. Potato chips treated with combined MgCl2 and CaCl2 received a significant higher score than the other two treatments because of the improved sample's texture (crispness). Microscopic analysis of SEM images showed a well-intact cellular structure and thicker middle lamelae after SVI treatment compared to the control samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...