Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 438: 137958, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38000159

RESUMO

Methyl jasmonate (MeJA) is an important phytohormone that regulates the development of grape, but the effect and underpin mechanism of its preharvest application on secondary metabolites accumulation in postharvest grape berries are still unclear. In this study, the transcriptome profiles combined with metabolic components analysis were used to determine the effect of preharvest MeJA application on the quality formation of postharvest rose-flavor table grape Shine Muscat. The results indicated that preharvest MeJA treatment had no significant effect on TSS content, but had a down-regulation effect on the accumulation of reducing sugar and titratable acid in the berries. The content of chlorophylls and carotenoids in treated berries was significantly higher than that of the control. Many phenolic components, such as trans-ferulic acid, resveratrol, quercetin, and kaempferol, were sensitive to MeJA and their contents were also significantly higher than that of the control under MeJA treatments during the shelf life. Compared with other volatile aroma components, terpenoid components were more sensitive to preharvest MeJA signals, the content of which presented an overall upward trend with increasing MeJA concentration and prolonging storage time. Furthermore, most of the differentially expressed genes in the general phenylpropanoid pathway and terpenoid biosynthesis pathway were up-regulated responding to MeJA signals. The most upregulated regulatory factors, such as VvWRKY72, VvMYB24, and VvWRI1, may be involved in MeJA signal transduction and regulation. Preharvest MeJA may be an effective technique for enhancing the quality of postharvest Shine Muscat grape berries, with its positive effect on enhancing the characteristic aroma and nutritional components.


Assuntos
Vitis , Vitis/metabolismo , Frutas/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Terpenos/metabolismo
2.
Mol Med Rep ; 28(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37921051

RESUMO

Abnormal activation of microglia and the production of proinflammatory cytokines can lead to chronic neuroinflammation, which is an important pathological characteristic of Parkinson's disease (PD). Neferine is a chemical compound extracted from lotus seed which has previously been reported to exert protective effects on the development of several types of cancer, myocardial injury and hypoxic­ischemic encephalopathy. However, its effect on microglial functions in neuroinflammation remains to be clarified. The present study used network pharmacology and screening in a lipopolysaccharide (LPS) model to demonstrate that neferine suppresses the production of inducible nitric oxide synthase, interleukin­6 and tumor necrosis factor α in LPS­treated BV­2 cells. The working concentration of neferine did not exert cytotoxic effects on BV­2 cells. Mechanistically, neferine attenuated inflammation by inhibiting the phosphorylation and nuclear translocation of the NF­κB p65 subunit. In vivo, neferine protected mice from the inflammatory response in the substantia nigra and inhibited the development of nervous disorders in the 1­methyl­4­phenyl­1,2,3,6­tetrahydropyridine­induced PD model. The present study demonstrated that neferine inhibited LPS­mediated activation of microglia by inhibiting NF­κB signaling. These findings may provide a new reference for the prevention and future treatment of PD.


Assuntos
Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Microglia , NF-kappa B , Doenças Neuroinflamatórias , Lipopolissacarídeos/farmacologia , Linhagem Celular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Óxido Nítrico
3.
Front Neuroimaging ; 2: 959601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554651

RESUMO

Introduction: Mitochondria are extremely important organelles in the regulation of bone marrow and brain activity. However, live imaging of these subcellular features with high resolution in scattering tissues like brain or bone has proven challenging. Methods: In this study, we developed a two-photon fluorescence microscope with adaptive optics (TPFM-AO) for high-resolution imaging, which uses a home-built Shack-Hartmann wavefront sensor (SHWFS) to correct system aberrations and a sensorless approach for correcting low order tissue aberrations. Results: Using AO increases the fluorescence intensity of the point spread function (PSF) and achieves fast imaging of subcellular organelles with 400 nm resolution through 85 µm of highly scattering tissue. We achieved ~1.55×, ~3.58×, and ~1.77× intensity increases using AO, and a reduction of the PSF width by ~0.83×, ~0.74×, and ~0.9× at the depths of 0, 50 µm and 85 µm in living mouse bone marrow respectively, allowing us to characterize mitochondrial health and the survival of functioning cells with a field of view of 67.5× 67.5 µm. We also investigate the role of initial signal and background levels in sample correction quality by varying the laser power and camera exposure time and develop an intensity-based criteria for sample correction. Discussion: This study demonstrates a promising tool for imaging of mitochondria and other organelles in optically distorting biological environments, which could facilitate the study of a variety of diseases connected to mitochondrial morphology and activity in a range of biological tissues.

4.
J Med Virol ; 95(7): e28948, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37436839

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic posed great impacts on public health. To fight against the pandemic, robust immune responses induced by vaccination are indispensable. Previously, we developed a subunit vaccine adjuvanted by aluminum hydroxide, ZF2001, based on the dimeric tandem-repeat RBD immunogen, which has been approved for clinical use. This dimeric RBD design was also explored as an mRNA vaccine. Both showed potent immunogenicity. In this study, a DNA vaccine candidate encoding RBD-dimer was designed. The humoral and cellular immune responses induced by homologous and heterologous prime-boost approaches with DNA-RBD-dimer and ZF2001 were assessed in mice. Protection efficacy was studied by the SARS-CoV-2 challenge. We found that the DNA-RBD-dimer vaccine was robustly immunogenic. Priming with DNA-RBD-dimer followed by ZF2001 boosting induced higher levels of neutralizing antibodies than homologous vaccination with either DNA-RBD-dimer or ZF2001, elicited polyfunctional cellular immunity with a TH 1-biased polarization, and efficiently protected mice against SARS-CoV-2 infection in the lung. This study demonstrated the robust and protective immune responses induced by the DNA-RBD-dimer candidate and provided a heterologous prime-boost approach with DNA-RBD-dimer and ZF2001.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Humanos , Animais , Camundongos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Anticorpos Neutralizantes , Imunidade Celular , Anticorpos Antivirais
5.
Adv Healthc Mater ; 12(26): e2300927, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37262422

RESUMO

Natural bone tissue possesses inherent electrophysiological characteristics, displaying conductivity and piezoelectricity simultaneously; hence, the reconstruction of local electrical microenvironment at defect site provides an effective strategy to enhance osteogenesis. Herein, a composite cryogel-type scaffold (referred to as Gel-PD-CMBT) is developed for bone regeneration, utilizing gelatin (Gel) in combination with a conductive poly(ethylene dioxythiophene)/polystyrene sulfonate matrix and Ca/Mn co-doped barium titanate (CMBT) nanofibers as the piezoelectric filler. The incorporation of these components results in the formation of an integrated piezoelectric/conductive network within the scaffold, facilitating charge migration and yielding a conductivity of 0.59 S cm-1 . This conductive scaffold creates a promising electroactive microenvironment, which is capable of up-regulating biological responses. Furthermore, the interconnected porous structure of the Gel-PD-CMBT scaffold not only provides mechanical stability but also offered ample space for cellular and tissue ingrowth. This Gel-PD-CMBT scaffold demonstrates a greater capacity to promote cellular osteogenic differentiation in vitro and neo-bone formation in vivo. In summary, the Gel-PD-CMBT scaffold, with its integrated piezoelectricity and conductivity, effectively restores the local electroactive microenvironment, offering an ideal platform for the regeneration of electrophysiological bone tissue.


Assuntos
Osteogênese , Alicerces Teciduais , Alicerces Teciduais/química , Criogéis/química , Regeneração Óssea , Osso e Ossos , Engenharia Tecidual/métodos
6.
Signal Transduct Target Ther ; 8(1): 189, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37221173

RESUMO

Current attempts in vaccine delivery systems concentrate on replicating the natural dissemination of live pathogens, but neglect that pathogens evolve to evade the immune system rather than to provoke it. In the case of enveloped RNA viruses, it is the natural dissemination of nucleocapsid protein (NP, core antigen) and surface antigen that delays NP exposure to immune surveillance. Here, we report a multi-layered aluminum hydroxide-stabilized emulsion (MASE) to dictate the delivery sequence of the antigens. In this manner, the receptor-binding domain (RBD, surface antigen) of the spike protein was trapped inside the nanocavity, while NP was absorbed on the outside of the droplets, enabling the burst release of NP before RBD. Compared with the natural packaging strategy, the inside-out strategy induced potent type I interferon-mediated innate immune responses and triggered an immune-potentiated environment in advance, which subsequently boosted CD40+ DC activations and the engagement of the lymph nodes. In both H1N1 influenza and SARS-CoV-2 vaccines, rMASE significantly increased antigen-specific antibody secretion, memory T cell engagement, and Th1-biased immune response, which diminished viral loads after lethal challenge. By simply reversing the delivery sequence of the surface antigen and core antigen, the inside-out strategy may offer major implications for enhanced vaccinations against the enveloped RNA virus.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Humanos , Antígenos Virais , Vacinas contra COVID-19 , SARS-CoV-2 , Vacinação , Antígenos de Superfície , Anticorpos
7.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175884

RESUMO

Due to the specific base-pairing recognition, clear nanostructure, programmable sequence and responsiveness of the DNA molecule, DNA materials have attracted extensive attention and been widely used in controlled release, drug delivery and tissue engineering. Generally, the strategies for preparing DNA materials are based on the assembly of multiple DNA strands. The construction of DNA materials using only one DNA strand can not only save time and cost, but also avoid defects in final assemblies generated by the inaccuracy of DNA ratios, which potentially promote the large-scale production and practical application of DNA materials. In order to use one DNA strand to form assemblies, the sequences have to be palindromes with lengths that need to be controlled carefully. In this review, we introduced the development of DNA assembly and mainly summarized current reported materials formed by one DNA strand. We also discussed the principle for the construction of DNA materials using one DNA strand.


Assuntos
DNA , Nanoestruturas , Sequência de Bases , DNA/química , Nanoestruturas/química
8.
Sci Rep ; 13(1): 8852, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258560

RESUMO

In this study, we introduce a design of a feedback-type fluidic oscillator with elastic structures surrounding its feedback channel. By employing phase reduction theory, we extract the phase sensitivity function of the complex fluid-structure coupled system, which represents the system's oscillatory characteristics. We show that the frequency of the oscillating flow inside the fluidic oscillator can be modulated by inducing synchronization with the weak periodic forcing from the elastic structure vibration. This design approach adds controllability to the fluidic oscillator, where conventionally, the intrinsic oscillatory characteristics of such device were highly determined by its geometry. The synchronization-induced control also changes the physical characteristics of the oscillatory fluid flow, which can be beneficial for practical applications, such as promoting better fluid mixing without changing the overall geometry of the device. Furthermore, by analyzing the phase sensitivity function, we demonstrate how the use of phase reduction theory gives good estimation of the synchronization condition with minimal number of experiments, allowing for a more efficient control design process. Finally, we show how an optimal control signal can be designed to reach the fastest time to synchronization.

9.
Neural Comput ; 35(4): 645-670, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36827587

RESUMO

Gamma oscillations are thought to play a role in information processing in the brain. Bursting neurons, which exhibit periodic clusters of spiking activity, are a type of neuron that are thought to contribute largely to gamma oscillations. However, little is known about how the properties of bursting neurons affect the emergence of gamma oscillation, its waveforms, and its synchronized characteristics, especially when subjected to stochastic fluctuations. In this study, we proposed a bursting neuron model that can analyze the bursting ratio and the phase response function. Then we theoretically analyzed the neuronal population dynamics composed of bursting excitatory neurons, mixed with inhibitory neurons. The bifurcation analysis of the equivalent Fokker-Planck equation exhibits three types of gamma oscillations of unimodal firing, bimodal firing in the inhibitory population, and bimodal firing in the excitatory population under different interaction strengths. The analyses of the macroscopic phase response function by the adjoint method of the Fokker-Planck equation revealed that the inhibitory doublet facilitates synchronization of the high-frequency oscillations. When we keep the strength of interactions constant, decreasing the bursting ratio of the individual neurons increases the relative high-gamma component of the populational phase-coupling functions. This also improves the ability of the neuronal population model to synchronize with faster oscillatory input. The analytical frameworks in this study provide insight into nontrivial dynamics of the population of bursting neurons, which further suggest that bursting neurons have an important role in rhythmic activities.


Assuntos
Encéfalo , Neurônios , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Modelos Neurológicos
10.
Emerg Microbes Infect ; 12(1): e2179357, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36803449

RESUMO

The SARS-CoV-2 Omicron variants of concern (VOCs) showed severe resistance to the early-approved COVID-19 vaccines-induced immune responses. The breakthrough infections by the Omicron VOCs are currently the major challenge for pandemic control. Therefore, booster vaccination is crucial to enhance immune responses and protective efficacy. Previously, we developed a protein subunit COVID-19 vaccine ZF2001, based on the immunogen of receptor-binding domain (RBD) homodimer, which was approved in China and other countries. To adapt SARS-CoV-2 variants, we further developed chimeric Delta-Omicron BA.1 RBD-dimer immunogen which induced broad immune responses against SARS-CoV-2 variants. In this study, we tested the boosting effect of this chimeric RBD-dimer vaccine in mice after priming with two doses of inactivated vaccines, compared with a booster of inactivated vaccine or ZF2001. The results demonstrated that boosting with bivalent Delta-Omicron BA.1 vaccine greatly promoted the neutralizing activity of the sera to all tested SARS-CoV-2 variants. Therefore, the Delta-Omicron chimeric RBD-dimer vaccine is a feasible booster for those with prior vaccination of COVID-19 inactivated vaccines.


Assuntos
COVID-19 , Proteínas de Transporte , Animais , Humanos , Camundongos , Vacinas contra COVID-19 , SARS-CoV-2 , Subunidades Proteicas , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais
11.
Micromachines (Basel) ; 14(1)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36677222

RESUMO

An MEMS resonant accelerometer is a temperature-sensitive device because temperature change affects the intrinsic resonant frequency of the inner silicon beam. Most classic temperature compensation methods, such as algorithm modeling and structure design, have large errors under rapid temperature changing due to the hysteresis of the temperature response of the accelerometer. To address this issue, we propose a novel reservoir computing (RC) structure based on a nonlinear silicon resonator, which is specifically improved for predicting dynamic information that is referred to as the input-output-improved reservoir computing (IOI-RC) algorithm. It combines the polynomial fitting with the RC on the input data mapping ensuring that the system always resides in the rich nonlinear state. Meanwhile, the output layer is also optimized by vector concatenation operation for higher memory capacity. Therefore, the new system has better performance in dynamic temperature compensation. In addition, the method is real-time, with easy hardware implementation that can be integrated with MEMS sensors. The experiment's result showed a 93% improvement in IOI-RC compared to raw data in a temperature range of -20-60 °C. The study confirmed the feasibility of RC in realizing dynamic temperature compensation precisely, which provides a potential real-time online temperature compensation method and a sensor system with edge computing.

12.
Chem Sci ; 13(33): 9685-9692, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36091896

RESUMO

We report a diastereoconvergent synthesis of anti-1,2-amino alcohols bearing N-containing quaternary stereocenters using an intermolecular direct C-H amination of homoallylic alcohol derivatives catalyzed by a phosphine selenide. Destruction of the allylic stereocenter during the selenium-catalyzed process allows selective formation of a single diastereomer of the product starting from any diastereomeric mixture of the starting homoallylic alcohol derivatives, eliminating the need for the often-challenging diastereoselective preparation of starting materials. Mechanistic studies show that the diastereoselectivity is controlled by a stereoelectronic effect (inside alkoxy effect) on the transition state of the final [2,3]-sigmatropic rearrangement, leading to the observed anti selectivity. The power of this protocol is further demonstrated on an extension to the synthesis of syn-1,4-amino alcohols from allylic alcohol derivatives, constituting a rare example of 1,4-stereoinduction.

13.
Exp Cell Res ; 418(2): 113269, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35817196

RESUMO

Due to the inflammatory responses associated with defect occurrence and materials implantation, immunoregulation has emerged as a promising strategy to enhance bone regeneration. It has been widely reported that a material could facilitate osteogenesis if it can guide macrophages to anti-inflammatory M2 phenotype, vice versa, a substrate will influence macrophage phenotype if it is osteoinductive. However, few studies have looked into the intercellular crosstalking directly. Herein, the compound catalpol was selected for its multiple functions to study the interactions between bone marrow mesenchymal stromal cells (BMSCs) and macrophages. This iridoid glucoside exhibits excellent anti-inflammatory and osteoinductive activities. The effects of catalpol on mediating M1/M2 polarization of macrophages, inhibiting osteoclast differentiation, promoting osteogenesis and angiogenesis were systematically investigated to correlate the biological responses of BMSCs and macrophages. To extend its in vivo application, the catalpol was then loaded onto an electrospun polylactide/gelatin composite fibrous mesh and subcutaneously implanted to evaluate the local inflammation and ectopic osteogenesis. The results revealed that the functions of catalpol displayed in modulating cellular behaviors are via cell paracrine to strengthen intercellular crosstalking, hence demonstrating that catalpol itself could serve as a promising bioactive stimulator for bone tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Glucosídeos Iridoides/farmacologia , Macrófagos
14.
Cell ; 185(13): 2265-2278.e14, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35568034

RESUMO

Breakthrough infections by SARS-CoV-2 variants become the global challenge for pandemic control. Previously, we developed the protein subunit vaccine ZF2001 based on the dimeric receptor-binding domain (RBD) of prototype SARS-CoV-2. Here, we developed a chimeric RBD-dimer vaccine approach to adapt SARS-CoV-2 variants. A prototype-Beta chimeric RBD-dimer was first designed to adapt the resistant Beta variant. Compared with its homotypic forms, the chimeric vaccine elicited broader sera neutralization of variants and conferred better protection in mice. The protection of the chimeric vaccine was further verified in macaques. This approach was generalized to develop Delta-Omicron chimeric RBD-dimer to adapt the currently prevalent variants. Again, the chimeric vaccine elicited broader sera neutralization of SARS-CoV-2 variants and conferred better protection against challenge by either Delta or Omicron SARS-CoV-2 in mice. The chimeric approach is applicable for rapid updating of immunogens, and our data supported the use of variant-adapted multivalent vaccine against circulating and emerging variants.


Assuntos
COVID-19 , Vacinas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2/genética
15.
Probab Theory Relat Fields ; 182(3-4): 999-1033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509287

RESUMO

We prove the law of large numbers for the drift of random walks on the two-dimensional lamplighter group, under the assumption that the random walk has finite ( 2 + ϵ ) -moment. This result is in contrast with classical examples of abelian groups, where the displacement after n steps, normalised by its mean, does not concentrate, and the limiting distribution of the normalised n-step displacement admits a density whose support is [ 0 , ∞ ) . We study further examples of groups, some with random walks satisfying LLN for drift and other examples where such concentration phenomenon does not hold, and study relation of this property with asymptotic geometry of groups.

16.
Front Psychol ; 13: 785643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250726

RESUMO

Amid great uncertainty along with the possibility of huge returns, venture investment decisions are both technical and artistic. Past studies have paid much attention to the influences of objective factors on venture investment. However, subjective factors have been relatively ignored. As a salient psychological mechanism, temporal focus is of great importance for venture capitalists when making their investment decisions. This study performed content analysis to investigate how temporal focus at the organizational level affects investment decisions of venture capital (VC) firms. The results revealed that VCs with higher level of long-term orientation prefer to invest in less popular industries and ventures in the expansion period. Meanwhile, they are less likely to invest in very new start-ups. Moreover, long-term oriented VCs tend to re-invest in start-ups in their portfolios instead of just shooting once on numerous single start-ups. However, the author did not find any support on preferences of VCs for ventures with high level of human capital.

17.
Emerg Microbes Infect ; 11(1): 1058-1071, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35311493

RESUMO

Safe, efficacious, and deployable vaccines are urgently needed to control COVID-19 in the large-scale vaccination campaigns. We report here the preclinical studies of an approved protein subunit vaccine against COVID-19, ZF2001, which contains tandem-repeat dimeric receptor-binding domain (RBD) protein with alum-based adjuvant. We assessed vaccine immunogenicity and efficacy in both mice and non-human primates (NHPs). ZF2001 induced high levels of RBD-binding and SARS-CoV-2 neutralizing antibody in both mice and non-human primates, and elicited balanced TH1/TH2 cellular responses in NHPs. Two doses of ZF2001 protected Ad-hACE2-transduced mice against SARS-CoV-2 infection, as detected by reduced viral RNA and relieved lung injuries. In NHPs, vaccination of either 25 µg or 50 µg ZF2001 prevented infection with SARS-CoV-2 in lung, trachea, and bronchi, with milder lung lesions. No evidence of disease enhancement was observed in both animal models. ZF2001 has been approved for emergency use in China, Uzbekistan, Indonesia, and Columbia. The high safety, immunogenicity, and protection efficacy in both mice and NHPs found in this preclinical study was consistent with the results in human clinical trials.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Proteínas de Transporte , Humanos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Primatas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vacinas de Subunidades Antigênicas
18.
Micromachines (Basel) ; 13(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208441

RESUMO

Reservoir computing (RC) is a potential neuromorphic paradigm for physically realizing artificial intelligence systems in the Internet of Things society, owing to its well-known low training cost and compatibility with nonlinear devices. Micro-electro-mechanical system (MEMS) resonators exhibiting rich nonlinear dynamics and fading behaviors are promising candidates for high-performance hardware RC. Previously, we presented a non-delay-based RC using one single micromechanical resonator with hybrid nonlinear dynamics. Here, we innovatively introduce a nonlinear tuning strategy to analyze the computing properties (the processing speed and recognition accuracy) of the presented RC. Meanwhile, we numerically and experimentally analyze the influence of the hybrid nonlinear dynamics using the image classification task. Specifically, we study the transient nonlinear saturation phenomenon by fitting quality factors under different vacuums, as well as searching the optimal operating point (the edge of chaos) by the static bifurcation analysis and dynamic vibration numerical models of the Duffing nonlinearity. Our results in the optimal operation conditions experimentally achieved a high classification accuracy of (93 ± 1)% and several times faster than previous work on the handwritten digits recognition benchmark, profit from the perfect high signal-to-noise ratios (quality factor) and the nonlinearity of the dynamical variables.

19.
Gene ; 821: 146286, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35176425

RESUMO

Core cell cycle genes (CCCs) are essential regulators of cell cycle operation. In this study, a total of 69 CCCs family members, including 37 CYCs, 20 CDKs, five E2F/DPs, three KRPs, two RBs, one CKS and one Wee1, were identified from the longan genome. Phylogenetic and motifs analysis showed the evolutionary conservation of CCCs. Transcriptome dataset showed that CCCs had various expression patterns during longan early somatic embryogenesis (SE). Either CKS or CYCD3;2 silencing increased the expression of RB-E2F pathway genes, and the silencing of CYCD3;2 might induce the process of apoptosis in longan embryogenic callus (EC) cells. In addition, The qRT-PCR results showed that the expression levels of CDKG2, CYCD3;2, CYCT1;2, CKS and KRP1 were elevated by ABA, 2,4-D and PEG4000 treatments, while CDKG2 and CYCT1;2 were inhibited by NaCl treatment. In conclusion, our study provided valuable information for understanding the characterization and biological functions of longan CCCs.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Proteínas de Ciclo Celular/genética , Perfilação da Expressão Gênica/métodos , Sapindaceae/crescimento & desenvolvimento , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Técnicas de Embriogênese Somática de Plantas , Polietilenoglicóis/farmacologia , Sapindaceae/efeitos dos fármacos , Sapindaceae/genética , Cloreto de Sódio/efeitos adversos
20.
Microsyst Nanoeng ; 7: 83, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691758

RESUMO

Reservoir computing is a potential neuromorphic paradigm for promoting future disruptive applications in the era of the Internet of Things, owing to its well-known low training cost and compatibility with hardware. It has been successfully implemented by injecting an input signal into a spatially extended reservoir of nonlinear nodes or a temporally extended reservoir of a delayed feedback system to perform temporal information processing. Here we propose a novel nondelay-based reservoir computer using only a single micromechanical resonator with hybrid nonlinear dynamics that removes the usually required delayed feedback loop. The hybrid nonlinear dynamics of the resonator comprise a transient nonlinear response, and a Duffing nonlinear response is first used for reservoir computing. Due to the richness of this nonlinearity, the usually required delayed feedback loop can be omitted. To further simplify and improve the efficiency of reservoir computing, a self-masking process is utilized in our novel reservoir computer. Specifically, we numerically and experimentally demonstrate its excellent performance, and our system achieves a high recognition accuracy of 93% on a handwritten digit recognition benchmark and a normalized mean square error of 0.051 in a nonlinear autoregressive moving average task, which reveals its memory capacity. Furthermore, it also achieves 97.17 ± 1% accuracy on an actual human motion gesture classification task constructed from a six-axis IMU sensor. These remarkable results verify the feasibility of our system and open up a new pathway for the hardware implementation of reservoir computing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...