Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(19): 5012-5015, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181174

RESUMO

In this Letter, a new, to the best of our knowledge, external cavity structure based on double wavelength division multiplexing external cavities is proposed and demonstrated. The electro-optical conversion efficiency is improved and the brightness of the spectral beam combining diode lasers is enhanced. One wavelength division multiplexing external cavity is placed on the rear-side of the laser emitters to provide the strong optical feedback for wavelength locking and the other wavelength division multiplexing external cavity is placed on the front-side of laser emitters to combine three emitter beams to one beam. A maximum output power of up to 7.5 W is obtained and the brightness of the laser diode is 100 MW cm-2 sr-1 with an electro-optical conversion efficiency of 46.5%. Compared with a standard cavity for spectral beam combining, the use of double wavelength division multiplexing external cavities results in an electro-optical conversion efficiency improvement of 6.5%. The whole structure provides a new technology to achieve high-brightness and high electro-optical conversion efficiency for a laser diode source.

2.
Lab Chip ; 11(19): 3347-51, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21863148

RESUMO

We report here a facile approach for flexible integration of high efficiency surface enhanced Raman scattering (SERS) monitors in a continuous microfluidic channel. In our work, femtosecond laser direct writing was adopted for highly localizable and controllable fabrication of the SERS monitor through a multi-photon absorption (MPA) induced photoreduction of silver salt solution. The silver substrate could be shaped into designed patterns, and could be precisely located at the desired position of the microchannel bed, giving the feasibility for real-time detection during reactions. SEM and TEM images show that the silver substrates were composed of crystallized silver nanoplates with an average thickness of 50 nm. AFM results reveal that the substrates were about 600 nm in height and the surface was very rough. As representative tests for SERS detection, p-aminothiophenol (p-ATP) and flavin adenine dinucleotide (FAD) were chosen as probing molecules for microfluidic analysis at visible light (514.5 nm) excitation, exhibiting an enhancement factor of ~10(8). In addition, the combination of the SERS substrate with the microfluidic channel allows detection of inactive analytes through in situ microfluidic reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...