Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(6): 8638-8656, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571118

RESUMO

The laser-induced damage of ultraviolet fused silica optics is a critical factor that limits the performance enhancement of high-power laser facility. Currently, wet etching technology based on hydrofluoric acid (HF) can effectively eliminate absorbing impurities and subsurface defects, thereby significantly enhancing the damage resistance of fused silica optics. However, with an increase in the operating fluence, the redeposition defects generated during wet etching gradually become the primary bottleneck that restricts its performance improvement. The composition and morphology of redeposition defects were initially identified in this study, followed by an elucidation of their formation mechanism. A mitigation strategy was then proposed, which combines a reduction in the generation of precipitation with an acceleration of the precipitation dissolution process. Additionally, we systematically investigated the influence of various process parameters such as extrinsic impurity, etching depth, and megasonic excitation on the mitigation of deposition defects. Furthermore, a novel multiple-step dynamic etching method was developed. Through comprehensive characterization techniques, it has been confirmed that this new etching process not only effectively mitigate redeposition defects under low fluence conditions but also exhibits significant inhibition effects on high fluence precursors. Consequently, it significantly enhances the laser damage resistance performance of fused silica optics.

2.
Micromachines (Basel) ; 14(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37893364

RESUMO

Phase-modulated (PM) spectral failsafe systems are necessary to promptly terminate amplification processes following accidental seeding of a high-power laser chain with a non-PM pulse to prevent optical damage. In this work, we present a reliable spectral failsafe system that can indicate the presence or absence of sufficient PM light. This requirement is met by combining dual temperature-sensitive fiber Bragg gratings detection with high-speed RF amplitude comparisons. The failsafe trigger signal is generated when the spectral power at the peak sideband exceeds that at the center. The spectral failsafe system has the ability to distinguish between adequate and inadequate PM pulses, and it exhibits significant robustness in pulse width, TEC temperature drift, and DFB wavelength drift in experiments, making it valuable for safe high-power laser operations and providing a useful reference for other detection system designs.

3.
Opt Express ; 30(20): 35807-35816, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258523

RESUMO

Neutron irradiation induced degradation of porous silica film is studied by Molecular Dynamics and Density-Functional theory-based methods. The degradation of microscopic structure, thermal property, and optical property of porous silica film are systematically investigated. Low-energy recoil is used to simulate the neutron irradiation effect. The pair and bond angle distributions, and coordination number distributions reveal that, under neutron irradiation, the microscopic structure of porous silica film is obviously modified, and the coordination defects are induced. We find that the higher recoil energy, the more coordination defects are formed in the film. The increased defects lead to a decrease in thermal conductivity. In addition, neutron irradiation induces additional optical absorption peaks in UV region and increasement in refractive index, resulting in a noticeable reduction in light transmittance. The detailed calculation of density of states reveals that these optical absorption peaks originate from the irradiation induced defect states in band gap. Our work shows that low-energy neutron irradiation can induce obvious defect density and degrade thermal and optical properties of porous silica film, which are responsible for subsequent laser-induced damage.

4.
Opt Lett ; 47(3): 653-656, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103696

RESUMO

A photo-thermal absorption distribution probability curve based on a normal distribution model was proposed to describe the distribution of absorptive defects on fused silica surfaces under different processing conditions. Simultaneously, the maximum distribution probability absorption coefficient (MPA) and absorption distribution deviation (ADD) were used to quantitatively describe the overall absorption level and the uniformity of the absorption distribution on the fused silica surface. Based on this, the MPA (µ) and ADD (δ) were used to establish a statistical numerical relationship with the surface damage density of fused silica. The results showed that when µ ≤ 0.095 ± 0.015 and δ ≤ 0.045 ppm, the fused silica optics met the manufacturing process requirements for high laser-induced damage performance. Thus, a non-destructive approximate evaluation of the laser-induced damage density on the fused silica surface was achieved. This evaluation method provides a new, to the best of our knowledge, technology for evaluating the manufacturing process quality related to the damage performance of fused silica optics in high-power solid-state laser facilities and is an important supplement to popular destructive laser-induced damage testing methods.

5.
Opt Express ; 29(20): 31849-31858, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615268

RESUMO

As a high-performance optical material, fused silica is widely applied in high-power laser and photoelectric systems. However, laser induced damage (LID) of fused silica severely limits the output power and performance of these systems. Due to the values in strong field physics and improving the load capacity and performance of high power systems at UV laser, LID at 355 nm of fused silica has attracted much attention. It has been found that, even be treated by advanced processing technologies, the actual damage threshold of fused silica at 355 nm is far below the intrinsic threshold. It means that there is an absorption source near 355 nm in fused silica. However, to date, the absorption source is still unknown. In this paper, a absorption source near 355 nm is found by first-principles calculations. We find that the absorption source near 355 nm is neutral oxygen-vacancy defect (NOV, ≡Si-Si≡) and this defect originates from the oxygen deficiency of fused silica. Our results indicate that NOV defect can be taken as a damage precursor for 355 nm UV laser, and this precursor can be obviously reduced by increasing the ratio of oxygen to silicon. Present work is valuable for exploring damage mechanisms and methods to improve the damage threshold of fused silica at UV laser.

6.
Opt Express ; 29(8): 12365-12380, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984998

RESUMO

We investigate the role of each step in the combined treatment of reactive ion etching (RIE) and dynamic chemical etching (DCE) for improving the laser-induced damage resistance of fused silica optics. We employ various surface analytical methods to identify the possible damage precursors on fused silica surfaces treated with different processes (RIE, DCE, and their combination). The results show that RIE-induced defects, including F contamination, broken Si-O bonds, luminescence defects (i.e., NBOHCs and ODCs), and material densification, are potential factors that limit the improvement of laser-induced damage resistance of the optics. Although being capable of eliminating the above factors, the DCE treatment can achieve rough optical surface with masses of exposed scratches and pits which might serve as reservoirs of the deposits such as inorganic salts, thus limiting the further improvement in damage resistance of fused silica. The study guides us to a deep understanding of the laser-induced damage process in achieving fused silica optics with enhanced resistance to laser-induced damage by the combined treatment of RIE and DCE.

7.
RSC Adv ; 11(47): 29323-29332, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479536

RESUMO

The optical performance of fused silica optics used in high-power lasers is known to depend not only on their surface damage resistance, but also on their surface quality. Previous studies have shown that good fused silica damage performance and surface quality can be achieved by the use of reactive ion etching (RIE), followed by HF-based wet shallow etching (3 µm). In this study, two kinds of HF-based etchants (aqueous HF and HF/NH4F solutions) were employed to investigate the effect of HF-based etching on the optical performance of reactive-ion-etched fused silica surfaces at various HF-based shallow etching depths. The results showed that the addition of NH4F to HF solution makes it possible to produce a high-quality optical surface with a high laser-induced damage threshold, which is strongly associated with the surface roughness and fluorescence defect density. Additionally, changing the HF-based etching depth over the range from 1 µm to 3 µm can affect the surface damage resistance and absorption performance of RIE-treated fused silica. The light-scattering results indicate that the point defect density plays an important role in the determination of the HF-based etching depth. Understanding these trends can enable the advantages of the combined technique of RIE and HF-based etching during the fabrication of high-quality fused silica optics.

8.
Nanomaterials (Basel) ; 10(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545341

RESUMO

Metasurfaces, being composed of subwavelength nanostructures, can achieve peculiar optical manipulations of phase, amplitude, etc. A large field of view (FOV) is always one of the most desirable characteristics of optical systems. In this study, metasurface-based quadratic reflectors (i.e., meta-reflectors) made of HfO2 nanopillars are investigated to realize a large FOV at infrared wavelengths. First, the geometrical dependence of HfO2 nanopillars' phase difference is analyzed to show the general principles of designing infrared HfO2 metasurfaces. Then, two meta-reflectors with a quadratic phase profile are investigated to show their large FOV, subwavelength resolution, and long focal depth. Furthermore, the two quadratic reflectors also show a large FOV when deflecting a laser beam with a deflecting-angle range of approximately ±80°. This study presents a flat optical metamaterial with a large FOV for imaging and deflecting, which can greatly simplify the optical-mechanical complexity of infrared systems, particularly with potential applications in high-power optical systems.

9.
Nanomaterials (Basel) ; 10(2)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023807

RESUMO

In this study, the high-efficiency phase control Si metasurfaces are investigated based on aperiodic nanoarrays unlike widely-used period structures, the aperiodicity of which providing additional freedom to improve metasurfaces' performance. Firstly, the phase control mechanism of Huygens nanoblocks is demonstrated, particularly the internal electromagnetic resonances and the manipulation of effective electrical/magnetic polarizabilities. Then, a group of high-transmission Si nanoblocks with 2π phase control is sought by sweeping the geometrical parameters. Finally, several metasurfaces, such as grating and parabolic lens, are numerically realized by the nanostructures with high efficiency. The conversion efficiency of the grating reaches 80%, and the focusing conversion efficiency of the metalens is 99.3%. The results show that the high-efficiency phase control metasurfaces can be realized based on aperiodic nanoarrays, i.e., additional design freedom.

10.
Opt Express ; 27(16): 23307-23320, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510611

RESUMO

Reactive ion etching (RIE) is crucial for fabricating high-quality fused silica optics since this technique can be used as a first step before dynamic chemical etching (DCE) for tracelessly removing the fractured defects in subsurface layer. The final quality of the optics is dramatically influenced by the plasma etching condition but still lacks sufficient information for practical application. In this work, combination of RIE and DCE was investigated deeply on polished fused silica surface by changing the gas type and flow rate. We show that the proper choice of fluorine-containing plasma condition during the RIE process allows the simultaneous occurrence of high surface quality and a low concentration of etching-introduced defects on fused silica. This leads to an ultrahigh laser-induced damage threshold at 355 nm while substantially keeping the surface roughness unchanged. This study paves the way for designing and developing a next-generation surface modification ability of high-quality fused silica with the great potential for high-power laser application.

11.
Langmuir ; 35(35): 11351-11357, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31436095

RESUMO

Here, we report a straightforward approach to fabricate antifogging antireflective dual-function nanostructured coatings, where antireflective nanograsses were etched into antifogging polymer coatings by self-masking reactive ion etching (RIE). The transmittance of coatings increases with the etching time, and the maximum transmittance reaches up to 98.9% in 180 s. The effective refractive index of grass-like nanostructure was calculated to be 1.15 and its optical property was simulated via the finite difference time domain (FDTD) model. The antifogging property of polymer coatings remains unchanged after RIE, which results from the hygroscopicity of polymer matrix. This strategy surpasses traditional design concepts of antifogging polymer coatings by combining excellent antireflective and antifogging properties on the same outermost layer, which demonstrates that it is probable to achieve multifunction on a single layer of a single composition.

12.
Nanomaterials (Basel) ; 9(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717124

RESUMO

Suppression of Fresnel reflection from diffraction grating surfaces is very important for many optical configurations. In this work, we propose a simple method to fabricate subwavelength structures on fused-silica transmission grating for optical antireflection. The fabrication is a one-step self-masking reaction ion etching (RIE) process without using any masks. According to effective medium theory, random cone-shaped nanopillars which are integrated on the grating surface can act as an antireflective layer. Effects of the nanostructures on the reflection and transmission properties of the grating were investigated through experiments and simulations. The nanostructure surface exhibited excellent antireflection performance, where the reflection of the grating surface was suppressed to zero over a wide range of incident angles. Results also revealed that the etching process can change the duty cycle of the grating, and thus the diffraction orders if there are oblique lateral walls. The simulation results were in good agreement with the experimental ones, which verified our physical comprehension and the corresponding numerical model. The proposed method would offer a low-cost and convenient way to improve the antireflective performance of transmission-diffractive elements.

13.
Rev Sci Instrum ; 89(9): 093505, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278718

RESUMO

An ultraviolet Thomson-scattering system has been designed and implemented on the Shenguang-III laser facility, a 48-beam, 3ω (351 nm), 180 kJ-level laser driver for high energy density physics and inertial confinement fusion researches. The 4ω (263.3 nm) probe beam of the Thomson-scattering system is injected from the north pole (top) of the target chamber, with an assistant beam-pointing monitor to achieve high pointing accuracy. The Thomson-scattered light is collected by a double-Cassegrain optical transmission system, which provides an achromatic image over a wide wavelength range of 200-800 nm. A novel on-line alignment method is developed and applied to the diagnostic system, ensuring a volumetric positioning accuracy of ∼30 µm for the scattering volume. An online calibration is also conducted to provide the wavelength benchmark and the spectral resolution of the system. This Thomson-scattering system has been tested in a complicated experimental environment with gas-filled hohlraums, and a high-quality ion feature of the scattered light has been obtained.

14.
Opt Express ; 26(14): 18006-18018, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114081

RESUMO

We investigate the interest of combined process of reactive ion etching (RIE) and dynamic chemical etching (DCE) as a final step after polishing to improve the laser damage resistance of fused silica optics at the wavelength of 355 nm. The investigation is carried out on the polished fused silica optics by changing the RIE depth while keeping the DCE depth fixed. We evidence that the combined etching process can effectively remove the damage precursors on the fused silica surface and thus improve its laser-induced damage threshold exceeding the level of the deep HF-etched surface. The effects of the combined etching depth on the surface roughness and surface error are also studied systematically. We show that the combined shallow etching can achieve better overall surface quality. Deeper etching will cause surface quality degradation of the fused silica optics, which is believed to be associated with the chemical etching during the combined process. Given that HF acid processing will degrade the surface quality of fused silica optics, the combined shallow etching appears as a pertinent alternative to HF-based deep etching.

15.
Materials (Basel) ; 11(4)2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642571

RESUMO

The reactive ion etching (RIE) process of fused silica is often accompanied by surface contamination, which seriously degrades the ultraviolet laser damage performance of the optics. In this study, we find that the contamination behavior on the fused silica surface is very sensitive to the RIE process which can be significantly optimized by changing the plasma generating conditions such as discharge mode, etchant gas and electrode material. Additionally, an optimized RIE process is proposed to thoroughly remove polishing-introduced contamination and efficiently prevent the introduction of other contamination during the etching process. The research demonstrates the feasibility of improving the damage performance of fused silica optics by using the RIE technique.

16.
ACS Appl Mater Interfaces ; 10(16): 13851-13859, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29617569

RESUMO

In this work, antireflective and superhydrophilic subwavelength nanostructured fused silica surfaces have been created by one-step, self-masking reactive ion etching (RIE). Bare fused silica substrates with no mask were placed in a RIE vacuum chamber, and then nanoscale fluorocarbon masks and subwavelength nanostructures (SWSs) automatically formed on these substrate after the appropriate RIE plasma process. The mechanism of plasma-induced self-masking SWS has been proposed in this paper. Plasma parameter effects on the morphology of SWS have been investigated to achieve perfect nanocone-like SWS for excellent antireflection, including process time, reactive gas, and pressure of the chamber. Optical properties, i.e., antireflection and optical scattering, were simulated by the finite difference time domain (FDTD) method. Calculated data agree well with the experiment results. The optimized SWS show ultrabroadband antireflective property (up to 99% from 500 to 1360 nm). An excellent improvement of transmission was achieved for the deep-ultraviolet (DUV) range. The proposed low-cost, highly efficient, and maskless method was applied to achieve ultrabroadband antireflective and superhydrophilic SWSs on a 100 mm optical window, which promises great potential for applications in the automotive industry, goggles, and optical devices.

17.
RSC Adv ; 8(57): 32417-32422, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-35547680

RESUMO

HF-based etching has been successful in mitigating damage precursors on the surface of fused silica optics used in high power lasers. However, wet etching generally leaves an etching trace leading to surface roughness, which seriously degrades laser beam quality (e.g., transmission loss and wave-front degradation). A way of addressing this issue is to apply plasma etching as a preprocessing step before HF etching, but so far very few studies have provided a practical scheme for engineering applications. In this work, we proposed a novel two-step scheme by combining reactive ion beam etching with dynamic chemical etching techniques. We demonstrate the combined scheme is capable of tracelessly mitigating the laser damage precursors on a fused silica surface. The 0% probability damage threshold obtained by combined etching is 1.4 times higher than that obtained by HF-based etching. The study opens a new approach towards high damage-resistant optics manufacturing and provides the potential possibility of exploring extreme interactions between high-power lasers and matter.

18.
Sci Rep ; 7(1): 16239, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176659

RESUMO

The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

19.
Appl Opt ; 56(29): 8087-8091, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29047670

RESUMO

Polarization smoothing (PS) is a key approach to suppress laser plasma instabilities (LPI) in inertial confinement fusion (ICF) experiments. Here, we propose a liquid crystal (LC) PS element to realize single beam smoothing and demonstrate its smoothing effect, in principle, with a 2×2 LC polarization checkerboard, which reduces the laser intensity variation in the focal spot to 78.4%. LC PS elements, which have potential applications in high-power ICF laser drivers, have many advantages because they are easy to fabricate, cost effective, flexible, and large.

20.
Nanomaterials (Basel) ; 7(10)2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28946664

RESUMO

Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...