Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Biotechnol ; 24(5): 599-610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35748554

RESUMO

The domoic acid (DA) produced by certain species of the marine pennate diatom genus Pseudo-nitzschia is highly neurotoxic and can induce nerve excitability and neurotoxicity by binding with ionotropic glutamate receptors, causing amnesic shellfish poisoning in humans who consume seafood contaminated with DA. In recent years, poisoning of humans caused by DA has occurred around the world, which has attracted increasing attention, and studies on DA production by Pseudo-nitzschia have become the hotpot. This article reviews the progress in the biosynthesis of DA by the typical diatom Pseudo-nitzschia, in which the metabolic pathway of the biosynthesis of DA and its precursors, i.e., geranyl pyrophosphate and L-glutamate, and the various environmental factors affecting DA production including temperature, light intensity, nutrients, trace metals, and alien bacteria are discussed. The detection methods of DA (including bioassays, enzyme linked immunosorbent assays, high performance liquid chromatography, capillary electrophoresis and biosensors), as well as the morphology and toxigenicity of Pseudo-nitzschia are also presented.


Assuntos
Diatomáceas , Síndromes Neurotóxicas , Intoxicação por Frutos do Mar , Humanos , Diatomáceas/metabolismo , Ácido Caínico/análise , Ácido Caínico/metabolismo , Redes e Vias Metabólicas
2.
Sci Total Environ ; 729: 139005, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32361456

RESUMO

Phenomics is originally a biological concept. In the most recent years, the studies of plant and human phenomics have started, and show a strong momentum and trend of development. In this paper, based on the related research on bioleaching/acid mine drainage (AMD), we put forward the relevant concepts and methodology of phenomics of microbe-mineral interaction (MMI) in bioleaching/AMD environments. It refers to the systematic study on phenotypes of MMI on both levels of microbiome and mineralome under various environmental conditions, by which it gives the relationship between microbial/mineral genome and phenome of MMI responding to the varying environmental conditions. The pertinent methodology is of mainly (meta)-omics, synchrotron radiation-based techniques and supercomputing-based density function theory (DFT) calculation.


Assuntos
Mineração , Fenômica , Ácidos , Humanos , Minerais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...